断裂力学是经典工程机制的一个分支,它涉及应力场和外部负载下破裂固体的裂纹生长标准。该课程涵盖了断裂力学和故障标准的基本概念,线性弹性断裂力学(LEFM),弹性塑料断裂,金属,聚合物,陶瓷和复合材料的断裂,以及机制,例如J-Integral和CoD,例如J-Integral和CoD,以测量破裂的严重程度。疲劳裂纹生长机制,微裂纹以及如何发展和控制裂纹是过程的一部分。将涵盖如何使用有限元素,多尺度断裂力学和不同尺度上的断裂来评估断裂参数的计算方案。课程目录:线性弹性断裂力学(LEFM),能量释放速率,压力强度因子,非线性断裂力学,J构成,弹性塑料骨折,裂纹尖端可塑性,裂纹繁殖,裂缝繁殖,裂缝疲劳裂纹的生长,裂缝裂纹测试,裂纹测试,裂纹和组合材料和组合材料,较稳定性,更稳固,强化。课程目的:
申请人应具有机械工程、航空航天工程、船舶与海洋工程、土木工程和材料科学等专业的学士学位。具有硕士学位的研究生优先考虑。在以下领域有研究经验者将有很大优势:复合材料(制造/测试/分析)、FEA 模拟(使用 Abaqus/Ansys/LS-Dyna/COMSOL/内部代码)、科学编码(数值算法、网格生成、数据可视化等)
在格子离散元法 (LDEM) 中,不同类型的质量被视为集中在节点处并通过具有任意本构关系的一维元素连接起来。在先前对岩石样品拉伸断裂行为的研究中,已经验证了使用 LDEM 模型对非均质材料断裂进行数值预测的可行性,并且得到的结果与迄今为止可用的实验证据一致。在本文中,讨论了使用 LDEM 获得的结果。使用 LDEM 模拟一组不同尺寸的岩石样品,使其受到单调增加的简单拉伸。从 Alberto Carpinteri 提出的脆性数的角度分析了结果,以衡量所研究结构的脆性水平。实验结果和 LDEM 结果之间令人满意的相关性证实了该方法作为一种模拟准脆性材料断裂过程的数值工具的稳健性。
摘要 裂纹的存在会导致结构钢在临界屈服强度以下失效。本文的主要目的是简化和整合应力集中、断裂应力、应力强度因子、裂纹尖端张开位移和 J 积分参数的数学推导,从第一原理开始,并应用于疲劳。本文解释了从理论概念中断裂力学参数的数学推导,包括使用基于应变的方法预测疲劳寿命的替代方法。只有当缺口半径远大于零时,缺口周围的应力集中才会发生,当裂纹尖端半径等于零时,尖锐裂纹处的应力场会显示奇异性。此外,钝化裂纹尖端违反了应力奇异性,而裂纹尖端张开位移和 J 积分参数显示了裂纹延伸超过零裂纹尖端半径的解,因此用于表征具有钝化裂纹尖端的材料应力场。本文强调了使用 J 积分和裂纹尖端张开位移参数而不是应力强度因子来表征疲劳裂纹扩展的好处。本文将主要使核能、航空、石油和天然气行业的工程师和专家受益。
纤维金属层压板 (FML) 是一大类组合粘合结构,由粘合有纤维增强聚合物层的薄金属板组成 [1]。FML 的混合概念因其出色的抗疲劳性以及抗冲击、耐腐蚀等其他优异的机械特性而闻名。FML 的一种变体 Glare 由交替粘合在一起的薄铝板和玻璃纤维环氧层制成,已在空客 A380 上大规模用作机身蒙皮和尾翼前缘蒙皮材料。与单片金属板相比,FML 的优异疲劳性能归因于完整纤维在疲劳裂纹尖端后提供的桥接机制,如图所示。1。抗疲劳纤维保持完整,并抑制金属层中裂纹的张开,从而使载荷从开裂的金属层转移到桥接纤维。这种桥接机制显著增强了金属层对疲劳裂纹扩展的抵抗力,因为它降低了裂纹尖端的应力严重程度。同时,由于开裂的金属层和桥接纤维之间以剪切形式循环传递载荷,在复合材料/金属界面处发生分层,这是 FML 中的一种伴随失效机制 [2] 。FML 中显著改善的抗疲劳性和失效机制非常具有代表性,是广泛应用于各个工程领域的一般组合胶接结构中的代表。组合粘合结构提供的定制裂纹延迟功能通常用于航空航天工业的安全关键结构 [4,5] 。冗余负载路径和损伤阻止功能,例如机身撕裂带、疲劳裂纹延迟器 [6,7] 和裂纹阻止器 [8] ,最好通过粘合剂粘合到蒙皮板上,以减缓疲劳裂纹扩展,并允许定期检查以检测疲劳裂纹。组合结构的这些功能与适航法规推荐的损伤容限设计理念相得益彰。通常采用粘合技术而不是机械紧固来向蒙皮板添加额外的负载路径,以避免与紧固过程相关的应力集中和高成本 [5] 。粘合剂粘接解决方案还提供了隔离特定结构元件损坏的机会 [5] 。此外,含有裂纹的薄壁金属飞机结构通常通过将复合材料补片粘合到
纤维金属层压板 (FML) 是组合粘合结构大家族中的一员,由薄金属板和纤维增强聚合物层粘合而成 [1]。FML 的混合概念因其卓越的抗疲劳性能以及抗冲击、耐腐蚀等优异的机械特性而闻名。FML 的一种变体 Glare 由交替粘合在一起的薄铝板和玻璃纤维环氧层制成,已被大规模用作空客 A380 的机身蒙皮和尾翼前缘蒙皮材料。与整体式金属板相比,FML 的卓越疲劳性能归因于疲劳裂纹尖端尾流中完整纤维提供的桥接机制,如图 1 所示。抗疲劳纤维保持完整并抑制金属层中裂纹的张开,从而使载荷从破裂的金属层转移到桥接纤维。这种桥接机制显著提高了金属层对疲劳裂纹扩展的抵抗力,因为它降低了裂纹尖端的应力严重程度。同时,由于开裂的金属层和桥接纤维之间以剪切形式传递的循环载荷,在复合材料/金属界面处发生了分层,这是 FML 中的一种伴随失效机制 [2] 。FML 中显著改善的抗疲劳性以及失效机制非常具有代表性,在一般组合结构中非常具有代表性
摘要 。WAAM工艺中的热行为是产生热应力的一个重要原因。本文利用ABAQUS软件建立了四层壁面的三维模型,以研究碳钢(ASTM A36)WAAM壁面的热行为。此外,研究了基材预热温度和行进速度对温度分布的影响。建模结果表明,随着沉积层数的增加,峰值温度升高,但平均冷却速度降低。此外,基材预热会增加第一层的峰值温度并降低其平均冷却速度。从模拟结果来看,行进速度对沉积层的热行为有主要影响。 关键词 。增材制造;电弧增材制造;有限元方法;低碳钢。
第一章 - 简介 1.1 螺纹连接的类型 23 1.1.1 结构螺母和螺栓 23 1.1.2 压力螺纹接头 25 1.2 螺纹连接的应力分析 26 1.2.1 理论模型 27 1.2.2 光弹性模型 30 1.2.3 应变测量模型 33 1.2.4 有限元模型 35 1.2.5 电气模拟模型 38 1.2.6 回顾 39 1.3 疲劳分析 41 1.3.1 S-N 方法 42 1.3.2 确定性方法 44 1.3.3 概率方法 44 1.3.4 循环计数变幅时间变化曲线 47 1.4 裂纹扩展的断裂力学评估 49 1.4.1 解析 SW 解 51 1.4.2 有限元分析 SW 解 55 1.4.3 实验 SW 解 56 1.4.4 权重函数 SW 解 57 1.4.5 裂纹张开位移 60 1.4.6 i-积分 63 1.5 总结 64 1.6 参考文献 66
虽然焊接船舶故障自 20 世纪初就已出现,但直到第二次世界大战期间大量船舶故障时,人们才充分认识到这一问题。])*。在第二次世界大战期间建造的约 5,000 艘商船中,到 1946 年已有 1,000 多艘出现相当大的裂纹。1942 年至 1952 年间,有 200 多艘船舶出现严重断裂,至少有 9 艘 T-2 油轮和 7 艘自由轮因脆性断裂而断成两截。自由轮中的大部分断裂始于舷侧板顶部的方形舱口角或方形切口。设计上的改变包括对舱口角进行冲压和加固、在舷侧舷板上增加方形切口、在各个位置增加铆接止裂装置,这些都立即降低了故障发生率。T-2 油船的大多数裂缝都源于船底对接焊缝的缺陷。使用止裂装置和改进工艺降低了这些船舶的故障发生率。研究表明,除了设计缺陷外,钢材质量也是导致“老旧船体”脆性断裂的主要因素。因此,1947 年,美国船级社对钢材的化学成分进行了限制。