a. 流量均衡:均衡池旨在通过稳定昼夜流量和保持不可预测的天气模式造成的高流量波动,为下游工艺提供一致的流量。b. 细筛:细筛用作预处理,以去除水中的粗物质。c. 膜生物反应器:二级处理,包括碳质生化需氧量 (BOD) 去除和氮去除,在膜生物反应器 (MBR) 中进行。MBR 工艺包括缺氧、曝气和膜分离步骤,以去除水中的微观物质,例如细菌。d. 反渗透:过滤后的水在高压下通过反渗透 (RO) 膜泵送以净化水,去除任何剩余的溶解固体、有机物和病原体。未通过 RO 膜的废弃水部分(约占处理量的 15-20%)称为 RO 浓缩液或盐水。e.后处理:在 RO 处理过程之后,水会进一步消毒,以便通过利用紫外线 (UV) 光消毒和高级氧化过程,为病原体和其他污染物增加另一道屏障,使其可以安全地再用于饮用。由于处理过程产生的纯净水质,矿物质随后被重新添加到水中以稳定水质并防止水管腐蚀。f. 盐水处理:RO 工艺产生的盐水通过现有的 5 英里排水口返回海洋。排放将符合适用的国家污染物排放消除系统 (NPDES) 许可证,排放限制基于加州海洋计划的水质目标。满足加州海洋计划的排放限制将最大限度地减少对海洋生物的影响,并避免在海底产生排放羽流或缺氧区域。
摘要:地中海饮食以植物性食物为基础,以其健康益处而闻名。本综述旨在概述一些代表性的地中海饮食植物中存在的生物活性分子,研究其人类的营养效应和健康益处,以及从其种植中获得的环境优势和可持续性。此外,它探讨了由土壤和植物菌群特性帮助的强化食品的便利。良好的例子,例如特级初榨橄榄油和柑橘类水果,表现出显着的健康优势,包括抗癌,抗炎和神经保护作用。在科学文献中提出了其他知名的植物,其对人类健康的有益特征强调了。刺梨的inishaxanthin具有抗氧化特性和潜在的抗癌特性,而刺山柑则具有Kaempferol和槲皮素支持心脏血管健康并预防癌症。牛至和百里香,含有甲状腺酸酚和γ-替丁烯,表现出抗菌作用。除了营养素的作用外,这些植物还在干旱的环境中壮成长,还提供了与其培养相关的益处。他们的微生物群,尤其是植物生长促进(PGP)微生物,增强了植物的生长和胁迫耐受性,为可持续农业提供了生物技术机会。总而言之,利用植物微生物群可以彻底改变农业实践,并随着气候变化威胁生物多样性而提高可持续性。这些可食用的植物物种可能具有至关重要的重要性,不仅是健康产品,而且对于提高农业系统的可持续性。
18的实际用途补贴(3)文档审查,2023年5月29日,星期一(4)访谈审查审查审查,6月13日,星期二和2023年6月14日,星期三(5)最终审查,最终审查,2023年6月30日,星期五(6)17家已选择赠款的公司
从「 AI 智能应用对日常生活之翻转与创新」专题报告中可以印证,人类的智慧和AI 科技,两方互相依赖,互惠互利,相辅相成,互相成就另一方, AI 科技的突飞猛进,不但使得人类的智慧得以更充分地展现,甚至藉由AI 而变得更添智慧,进而能做到以前人类做不到的事情。本专题报告内容含括了AI 与语音辨识、老人生活、工程建造、 5G 科技运用、运动、教育学习、人文等领域,人类的智慧结合AI ,未来似乎有无限想像的可能。刘炯朗院士主讲「科技与人文的平衡-AI 靠哪边站」压轴,阐述了一个不同的观点来看科技和人文,两者分别代表着电脑和人脑,就像翘翘板的两端,而中间点就是AI 的文明思路。本专题报告密切结合了人工智慧与人文关怀,能让大家深入了解AI 科技在日常生活中的翻转、创新,以及它将给人类带来更多更方便的生活和更美好的未来。当然,我诚挚期盼着这本专题报告,藉由主讲者无私地分享精辟的见解,必然助益产官学研
・秋永博之(产综研) 新材料研究在 AI 加速器开发中的作用 ・冈崎敦也(日本 IBM) 使用非易失性存储器件的神经网络集成电路 ・高桥博友(东京大学) 脑组织作为物理储存器的信息处理能力 ・内田厚(埼玉大学) 使用复杂光子学的光学储存器计算和光学决策 ・高木真一(东京大学) 使用铁电器件的储存器计算 ・田中雄一郎、田向仁、立野克美、田中博文、森江隆(九州工业大学)
Yugo R. Kamimura、Kenzo Yamatsugu、Tomoya Kujirai、Hitoshi Kurumizaka、Atsushi Iwama、Atsushi Kaneda、Shigehiro A. Kawashima *、Motomu Kanai * DOI:10.1038/s41467-025-56204-2 URL:https://doi.org/10.1038/s41467-025-56204-2 注释(禁运信息) 禁止在 1 月 24 日日本时间晚上 7 点(英国时间 24 日上午 10 点)之前出版。 这项研究得到了以下赠款的支持:科学研究的授予(项目编号:23H05466,23H05475),科学研究B(项目编号:21H02074),学术变革性研究A(项目编号:24H02328),学术变革研究b(项目编号:22H050501018),挑战7(PISPICT), (项目编号:21K19326,22K19553),年轻科学家研究(项目编号:22K15033),研究活动启动支持(项目编号:23K19423),AMED,AMED(项目编号:24AMA121009,21CM0106510H0006),JST-ERATO(JST-ERATO)(JST-ERATO)(JST-ERATO)(JST-ERATO)(JST-ERATO编号:JPMJERST和JPMJESS),和JPMJES119011901190119011901190119019019019019019019019019001900号。 (项目编号:JPMJCR24T3)、IAAR 研究支持计划、朝日硝子基金会研究补助金、武田科学基金会研究补助金以及持田纪念医学和制药科学基金会研究补助金。 术语表(注1) 催化剂:能促进特定化学反应但自身不发生改变的分子。通过反复作用,可以使用少量的催化剂来生产大量所需的产品。 (注2)表观遗传学:通过化学修饰DNA或蛋白质而不改变DNA碱基序列来控制基因表达的机制。遗传信息以基因组的形式表达,而化学修饰的信息则称为表观基因组。 (注3)乙酰化:在蛋白质的赖氨酸残基上的氨基(-NH2)上引入乙酰基(-COCH3)的反应。 (注4)翻译后修饰:蛋白质在细胞中合成后添加的各种化学修饰。它参与调节蛋白质活性、稳定性和定位。
摘要:由聚(3,3-双(3,3-双基)(四甲基甲基)用四氢呋喃)制成的热固性聚氨酯弹性体和各种多功能异氰酸酯交联,以发现一种调节机械性能的新机制。额外的氢键基序(例如氨基甲酸酯或尿素)是在交叉链接机中构建的,被证明可以从本质上确定弹性体的刚度和韧性,而两个网络的共价交联密度严格控制在同一水平上。由傅立叶转换红外光谱(FTIR),动力学机械分析(DMA)和低场核磁共振(LFNMR)(lfnmr)(lfnmr)的证据(ftir)(ftir)(lfnmr),毫不犹豫地强调和支持聚氨酯热固件的机械性能的影响和支持。■简介聚氨酯弹性体是一种重要的粘弹性材料,在一定温度范围和较大的可逆变形性下具有相对较低的弹性模量。1,2