摘要 — 目标:当存在多个声源时,当前助听器中的降噪算法缺乏有关用户关注的声源的信息。为了解决这个问题,它们可以与听觉注意解码 (AAD) 算法相辅相成,该算法使用脑电图 (EEG) 传感器解码注意力。最先进的 AAD 算法采用刺激重建方法,其中关注源的包络从 EEG 重建并与各个源的包络相关。然而,这种方法在短信号段上表现不佳,而较长的片段在用户切换注意力时会产生不切实际的长检测延迟。方法:我们提出使用滤波器组公共空间模式滤波器 (FB-CSP) 解码注意力的方向焦点作为替代 AAD 范式,它不需要访问干净的源包络。结果:提出的 FB-CSP 方法在短信号段上的表现优于刺激重建方法,在相同任务上的表现也优于卷积神经网络方法。我们实现了高精度(1 秒窗口为 80%,准瞬时决策为 70%),足以实现低于 4 秒的最小预期切换持续时间。我们还证明解码器可以适应来自未见对象的未标记数据,并且仅使用位于耳朵周围的部分 EEG 通道来模拟可穿戴 EEG 设置。结论:提出的 FB-CSP 方法可以快速准确地解码听觉注意力的方向焦点。意义:在非常短的数据段上实现高精度是朝着实用的神经引导听力设备迈出的重要一步。
人们已经很好地承认,通过提供系统的灵活性选项并支持供应安全性[1],储能可以为欧盟的脱碳目标做出重大贡献,因为储能在系统中通常与低价相关的能源瞬间撤出能量,通常与低价相关,并在系统紧张时注入。但是,仍然需要解决一些障碍以进行储能以更有效地提供这些服务。政策制定者有责任提供一个有利的环境,以创建一个用于存储的水平竞争环境[2]。清洁能源包(CEP)为解决可再生能源指令(例如可再生能源指令)中的许多能源存储障碍提供了基础,但仍必须在国家一级实施此障碍。这包括制定国家能源存储的政策战略,以及欧盟和国家一级的组织,以权衡网络投资与从其他来源(例如储能)的灵活性采购。
Laneless和无方向运动是高速公路网络中连接和自动化车辆(CAVS)的轨迹行为的新型特征。应用此概念可以利用高速公路的最大潜在能力,尤其是在分布不均的方向需求下。尽管如此,消除了在车道和方向的分离域上的传统概念,因此可以增加混乱的驾驶行为和碰撞风险(从而损害安全性)。因此,本文的重点是在这种未来派环境中为骑士的轨迹规划,其双重目标是(i)提供和确保安全性,而(ii)提高了绩效性能。为此,我们提出了一种骑士的算法,以区分潜在的冲突车辆与自己的方向和/或反对的传播流(整个本文档中所谓的威胁)在早期(及时)阶段。之后,威胁工具被聚集为威胁群体。作为下一步,开发了一个分散的非线性模型预测控制(NLMPC)框架,以调节每个单个威胁集群中车辆的运动;从这个意义上讲,这是分别应用于每个群集中的分布式控制器。该控制方法的设计方式可以实现上述双重目标,结合了官能安全性和效率。最后,通过微观仿真研究对所提出的方法的性能进行了研究和评估。结果是有希望的,并确认了公路网络所提出的方法的效果。
文章标题:综述:真菌细胞中的 CRISPR/Cas12 介导的基因组编辑:植物真菌病理学的进展、机制和未来方向 作者:Chiti Agarwal[1] 所属机构:华盛顿州立大学 [1] Orcid ids:0000-0003-4125-2880[1] 联系电子邮件:chiti.agarwal@gmail.com 许可信息:本作品已根据知识共享署名许可 http://creativecommons.org/licenses/by/4.0/ 以开放获取的方式发表,允许在任何媒体中不受限制地使用、分发和复制,只要对原始作品进行适当的引用。条件、使用条款和出版政策可在 https://www.scienceopen.com/ 上找到。预印本声明:本文为预印本,尚未经过同行评审,正在考虑并已提交给 ScienceOpen Preprints 进行开放同行评审。 DOI:10.14293/PR2199.000129.v2 预印本首次在线发布时间:2023 年 6 月 8 日 关键词:CRISPR、CRISPR/Cas12、真菌病原体、植物病原体
活动四 第一部分:反思 SWOT 分析和首选未来陈述,以确定最紧迫的行动策略。确定 6-12 项最紧迫的策略,如果得到解决,将推动学区进一步实现其首选的未来使命、愿景、价值观/承诺和目标。
脓毒症的特征是免疫细胞对感染同时产生早期促炎反应和相反的抗炎反应,后者会导致长期免疫抑制。脓毒症的主要病理事件是先天和适应性免疫细胞的广泛程序性细胞死亡或细胞自我牺牲,导致严重的免疫抑制。这种严重的免疫功能障碍会妨碍有效的原发性病原体清除,从而增加继发性机会性感染、潜伏性病毒再激活、多器官功能障碍和死亡率升高的风险。细胞死亡的类型包括细胞凋亡(I 型程序性细胞死亡)、自噬(II 型程序性细胞死亡)、NETosis(形成中性粒细胞胞外陷阱 (NET) 的程序)和其他程序性细胞死亡,如细胞焦亡、铁死亡、坏死性凋亡,每种细胞死亡在脓毒症后期都以不同的方式导致免疫抑制。淋巴细胞(如 CD4 +、CD8+ T 细胞和 B 细胞)的广泛凋亡与免疫抑制密切相关。树突状细胞凋亡进一步损害 T 细胞和 B 细胞的存活,并可诱导 T 细胞无能或促进调节性 Treg 细胞增殖。此外,延迟凋亡和中性粒细胞功能受损会导致脓毒症中的院内感染和免疫功能障碍。有趣的是,异常的 NETosis 和随后成熟中性粒细胞的耗竭也会引发免疫抑制,中性粒细胞焦亡可以正向调节 NETosis。程序性细胞死亡 1 (PD-1) 或程序性细胞死亡 1 配体 (PD-L1) 之间的相互作用在脓毒症中的 T 细胞调节和中性粒细胞凋亡中起关键作用。树突状细胞生长因子 Fms 样酪氨酸激酶 (FLTEL) 可增加树突状细胞数量、增强 CD 28 表达、减弱 PD-L1 并提高脓毒症患者的存活率。最近,免疫辅助疗法因其在脓毒症患者中恢复宿主生理免疫和体内平衡的潜力而受到关注。本综述重点介绍了几种潜在的免疫治疗剂,旨在增强脓毒症管理中被抑制的先天性和适应性免疫反应。
作为能量和代谢的重要细胞器,线粒体动态状态的变化会影响细胞代谢的稳态。线粒体动力学包括线粒体融合和线粒体填充。前者由Mitofusin-1(MFN1),Mitofusin-2(MFN2)和光学萎缩1(OPA1)协调,后者是由Dynamin相关蛋白1(DRP1),Mitochoncondrial-Filemssion 1(Fis1)(FIS1)和Mitochondrialialialialialialialialialialionsion介导的。线粒体融合和填充通常处于动态平衡状态,此平衡对于保留适当的线粒体形态,功能和分布很重要。糖尿病疾病会导致线粒体动力学的障碍,这会导致新陈代谢的一系列异常,包括生物能源生产降低,活性氧(ROS)的过度产生,有缺陷的有缺陷的有线线虫和凋亡,最终与多意型核酸质体的多个慢性复杂性紧密相连。多项研究表明,糖尿病并发症的发生率与线粒体的增加有关,例如,糖尿病心肌细胞中的线粒体纤维症和线粒体融合受损过多,并且可以通过糖尿病的发展引起的心脏功能障碍。因此,靶向线粒体动力学的恢复将是II型糖尿病(T2D)及其并发症的有前途的治疗靶标。在本综述中讨论了线粒体动力学的分子方法,在T2D及其并发症的背景下的损害,以及针对线粒体动力学的药理学方法,并承诺对T2D治疗及其合并症治疗的收益。
EX-VIVO肺部灌注(EVLP)已成为肺移植中的一种变革性技术,提供了评估和修复供体肺部的解决方案,否则该供体肺部否则将被视为不适合。本评论文章探讨了EVLP技术的显着进步及其在临床实践中的应用。我们讨论了选择和修复供体肺部的标准,并强调了EVLP用于肺部肺部功能受损的肺部,这是由于诸如延长的缺血时间和供体吸烟史之类的因素。此外,我们详细介绍了改善肺功能评估的技术进步,包括开发更复杂的灌注解决方案以及对实时评估的人工智能的整合。此外,我们讨论了EVLP的未来前景,重点是灌注溶液中的潜在创新,再生医学和基因疗法的整合以提高同种异体移植质量。通过这项全面审查,我们旨在清楚地了解EVLP的当前状态及其有希望的未来方向,最终有助于改善肺移植的结果。
新南威尔士州货运政策改革计划 澳洲航空有限公司(简称澳洲航空集团)很高兴有机会向新南威尔士州政府提交《新南威尔士州货运改革临时指示》。澳洲航空货运是澳大利亚最大的独立航空货运服务企业,平均每个工作日运输 44,000 件货物。2026 年,随着西悉尼国际机场 (WSI) 投入运营,澳洲航空的货运业务将发生重大转变。WSI 是澳大利亚国家基础设施的重要组成部分,对新南威尔士州来说是一个重大机遇。澳洲航空集团欢迎与西悉尼航空城开发相关的大量基础设施投资,包括悉尼地铁的建设,以及 M12 等连接该区域和更广阔地区的主要干道。2023 年 6 月,澳洲航空集团宣布了从 WSI 运营的计划。开业第一年,预计每年将运送约 400 万名乘客,这意味着在澳航集团在 WSI 运营的第一年,将增加多达 700 个运营岗位。 1 2024 年 10 月,WSI 宣布,WSI 的新枢纽将在开业后将悉尼的航空货运能力提高约 33%,并通过升级后的北路提供专用通道,并靠近 Kemps Creek 和 Aerotropolis 不断增长的货运和物流中心。 2 货运从 KSA 过渡到 WSI——需要在 2025 年 6 月之前制定明确的过渡计划(有关战略规划和工业用地,请参阅 3.8.2 方向) 有许多政策限制影响州际和国际货运的无缝运输。最值得注意的是,悉尼金斯福德史密斯机场 (KSA) 的宵禁规定对时间敏感和当日货运的提升和交付提出了相当大的挑战。虽然 WSI 在 2026 年的开业将在一定程度上
