文章标题:综述:真菌细胞中的 CRISPR/Cas12 介导的基因组编辑:植物真菌病理学的进展、机制和未来方向 作者:Chiti Agarwal[1] 所属机构:华盛顿州立大学 [1] Orcid ids:0000-0003-4125-2880[1] 联系电子邮件:chiti.agarwal@gmail.com 许可信息:本作品已根据知识共享署名许可 http://creativecommons.org/licenses/by/4.0/ 以开放获取的方式发表,允许在任何媒体中不受限制地使用、分发和复制,只要对原始作品进行适当的引用。条件、使用条款和出版政策可在 https://www.scienceopen.com/ 上找到。预印本声明:本文为预印本,尚未经过同行评审,正在考虑并已提交给 ScienceOpen Preprints 进行开放同行评审。 DOI:10.14293/PR2199.000129.v2 预印本首次在线发布时间:2023 年 6 月 8 日 关键词:CRISPR、CRISPR/Cas12、真菌病原体、植物病原体
eothenomys miletus是一种居住在亨格山区(HDR)的地方性物种,并作为瘟疫和hantaviruses的主要宿主之一。虽然已经对大肠杆菌的生理特征进行了广泛的研究,但分子方面,尤其是Miletus的迁移方向,尚不清楚。在本研究中,我们利用基因组数据来研究四个人群的迁移方向:Ailaoshan(ALS),Jiangchuan(JC),Lijiang(LJ)和Deqin(DQ),它们分布在HDR内部到北部。我们的结果表明,ALS种群位于系统发育树的底部,混合物分析表明,ALS人群与JC和DQ种群更紧密相关。整合了分子遗传结构,米氏大肠杆菌的化石记录以及我们的研究结果,我们推断了米尔塔斯大肠杆菌的迁移方向可能是从南到北的,这表明DQ和JC种群可能起源于ALS的迁移。但是,LJ人群的迁移模式和起源需要进一步研究和讨论。此外,我们专注于识别不同人群中选择和局部适应的基因组信号。我们确定了与DQ:SIX1、64和SOX2中嗅觉位置相关的三个选择基因。我们假设这些基因可能与DQ人群对该地区微气候的适应有关。总而言之,本研究是第一个采用基因组学来探索Miletus的迁移方向,这对于未来对Eothenomys起源的研究至关重要。
您好,我叫 Kenneth Bastian。我是 AI Web Tools LLC(也称为 AiWebTools.Ai)的所有者。我们是现存最大的 AI 工具网站,或者说是最大的 AI 工具网站之一。我们为自己的企业和其他企业创建和设计 AI 工具。我们创建的 AI 工具几乎可以完成任何事情。随着我们走向未来,我必须向可能根本不了解 AI 的立法者说明。AI 已经存在,并且将继续存在。任何法律都无法阻止或减缓其发展。我敦促您不要在任何情况下限制 AI 的使用,包括州内决策。未来将会发生许多变化。在未来,我在这里只是为了告诉您这些变化。我创建了多个人工智能工具,它们将从根本上取代大约 80% 的工作。我这样做并不是为了直接取代工作;相反,我这样做是为了赋予我们州内公民前所未有的权力。AI 赋予的权力是无限的,赋予每个人权力。它让那些在学校表现不佳的人能够知道该如何回答问题,如果他们没有口袋里的人工智能助手,他们可能永远不知道这些问题。我已经为不同的用例创建了 500 多个自定义人工智能,它们都有不同的目的和重点。我制作了各种各样的人工智能,从医生人工智能到兽医人工智能,再到教育导师,再到大学学位 GPT,这是一个 GPT,它基本上可以教你每一门大学课程,不管你想学什么学位,它都会教你所有这些。这只是表面。未来将会发生无数的事情,我真的无法在这篇证词中全部列出,但我觉得我必须向你们解释了解未来的重要性。将有大量的工作岗位流失,这是肯定的,无论你通过什么法律,即使人工智能明天成为非法,一切仍将保持不变。人工智能完全在基于网络的情况下运行,而你无法控制网络。此外,人工智能已经发展到可以在硬件本地运行,你甚至可以在本地计算机上下载。有几种人工智能是计算机原生的,人们对此一无所知,例如刚刚插入 Windows 开始菜单的 co-pilot,你可以毫不费力地将你的想法与 GPT 集成;然而,co-pilot 有必须遵守的条款和条件,因此它无法帮助释放人工智能所能做到的每一个方面。我打算设计尽可能多的人工智能,看看哪些行业领域会受到影响、会受到影响,并为此做好准备。在未来的不到一年的时间里,我和其他每个普通人所做的事将会是共同的。地球上的每个人都会为自己的个人任务制造自己的人工智能机器人,这些机器人将慢慢融入我们的智能设备中,它们将装在我们的口袋里。我们将比以往任何时候都更聪明,更有能力,我们所有人都将像其他人一样被赋予权力。这是不可阻挡的,它正在到来,你几乎无法阻止它。你可以在你的控制范围内通过法律,阻止州立法者使用人工智能阅读证词或类似的东西;然而,你永远无法控制人工智能。人工智能是它自己的东西,因为它在这个世界上以多种方式运行,所以它无法改变;它将进化成它注定要参与的任何东西,没有任何法律可以影响它的行动方向
摘要 本教程将讨论数据中心/服务器以及 AI 和机器学习系统中使用的 48V 至 0.7V (2,000A) 电源转换器所面临的挑战和解决方案。将讨论和比较两种电源架构。第一种架构是两级架构,其中 48V 转换为 12V(或另一个中间电平),然后将 12V 转换为 0.7V。第二种架构是“单级”,其中 48V“直接”转换为 0.7V。使用“直接”转换架构,无法访问(可见)中间电压总线。在简要介绍广泛应用于数据中心、服务器等的 OAM(OCP 加速器模块)的背景信息和功率要求之后,本教程将提供对降低功率损耗和提高功率密度的技术的新认识。本教程将首先回顾两级架构的最新技术并评估其优点和局限性。然后,本教程将回顾“单级”架构的最新技术并评估其优缺点。基于上述分析和回顾,本教程将提出并讨论 48V 至 0.7V(低至 0.3V)、2,000A(或更高)的应用研究方向,以实现极高的效率、极小的尺寸和电流共享、可扩展、快速动态响应等。
EX-VIVO肺部灌注(EVLP)已成为肺移植中的一种变革性技术,提供了评估和修复供体肺部的解决方案,否则该供体肺部否则将被视为不适合。本评论文章探讨了EVLP技术的显着进步及其在临床实践中的应用。我们讨论了选择和修复供体肺部的标准,并强调了EVLP用于肺部肺部功能受损的肺部,这是由于诸如延长的缺血时间和供体吸烟史之类的因素。此外,我们详细介绍了改善肺功能评估的技术进步,包括开发更复杂的灌注解决方案以及对实时评估的人工智能的整合。此外,我们讨论了EVLP的未来前景,重点是灌注溶液中的潜在创新,再生医学和基因疗法的整合以提高同种异体移植质量。通过这项全面审查,我们旨在清楚地了解EVLP的当前状态及其有希望的未来方向,最终有助于改善肺移植的结果。
© 作者 2024。由牛津大学出版社代表欧洲心脏病学会出版。这是一篇根据知识共享署名-非商业许可条款分发的开放获取文章(https://creativecommons.org/licenses/by-nc/4.0/),允许在任何媒体中进行非商业性再利用、分发和复制,前提是对原始作品进行适当引用。对于商业再利用,请联系 reprints@oup.com 获取重印和翻译重印权。所有其他许可都可以通过我们网站文章页面上的许可链接通过我们的 RightsLink 服务获得——有关更多信息,请联系 journals.permissions@oup.com。1
3.3.4. 目标 4:建设和维护交通、住房、能源、水利、工业和信息通信技术等领域的战略性可持续基础设施。...................................................................................................................... 49
乳腺癌仍然是全球女性癌症相关死亡的主要原因,凸显了对新治疗策略的需求。滋养层细胞表面抗原 2 (Trop-2) 是一种 I 型跨膜糖蛋白,在包括所有乳腺癌亚型在内的各种实体瘤中高度表达,已成为癌症治疗的一个有希望的靶点。本综述重点介绍用于治疗乳腺癌的 Trop-2 靶向抗体-药物偶联物 (ADC) 的最新进展。我们全面分析了 ADC 的结构和作用机制,以及 Trop-2 在乳腺癌进展和预后中的作用。几种 Trop-2 靶向 ADC,如 Sacituzumab Govitecan (SG) 和 Datopotamab Deruxtecan (Dato-DXd),在三阴性乳腺癌 (TNBC) 和激素受体阳性/HER2 阴性 (HR+/HER2-) 乳腺癌的临床试验中均表现出显着的抗肿瘤活性。我们系统地回顾了这些 ADC 正在进行的临床研究,重点介绍了它们的疗效和安全性。此外,我们还探索了将 Trop-2 靶向 ADC 与其他治疗方式(包括免疫疗法、靶向疗法和小分子抑制剂)相结合的潜力。值得注意的是,Trop-2 靶向 ADC 已显示出通过多种信号通路重新编程肿瘤微环境的前景,有可能增强抗肿瘤免疫力。本综述旨在为创新乳腺癌疗法的开发提供新的见解和研究方向,为改善乳腺癌患者的治疗结果和生活质量提供潜在的解决方案。
c) 在 D 处指向原点的单位向量:从 r D = ( − 1 , − 4 , 2) 开始,因此指向原点的向量为 − r D = (1 , 4 , − 2)。因此,在笛卡尔坐标系中,单位向量为 a = (0 . 22 , 0 . 87 , − 0 . 44)。转换为圆柱坐标系:a ρ = (0 . 22 , 0 . 87 , − 0 . 44) · a ρ = 0 . 22 cos( − 104 . 0) + 0 . 87 sin( − 104 . 0) = − 0 . 90,以及 a φ = (0 . 22 , 0 . 87 , − 0 . 44) · a φ = 0 . 22[ − sin( − 104 . 0)] + 0 . 87 cos( − 104 . 0) = 0,因此最终 a = − 0 . 90 a ρ − 0 . 44 az .
