KRSP2 VSD 将强大的动力平台与先进的控制方案相结合。该驱动器提供软启动功能,并能够通过匹配流量和需求,在压缩机的容量范围内高效运行,同时保持高水平的压力控制。通过消除浪费的能源,可以节省高达 35% 或更多的成本。凭借这种程度的节省,变速驱动器的额外资本成本可以在不到一年的运行中收回。
旋翼 AH-64 阿帕奇长弓直升机提供昼夜和恶劣天气攻击直升机能力。阿帕奇是陆军的主要攻击直升机。它是一种反应迅速的机载武器系统,可以近距离和纵深作战,以摧毁、扰乱或延缓敌军。当今陆军库存中的三种阿帕奇飞机是 AH-64D 长弓 Block I 和 Block II 以及最新的 AH-64E 阿帕奇。阿帕奇的最大速度为 145 节。它的最大总重量范围为 230 海里,并具有使用内部和外部油箱扩展范围的能力。阿帕奇拥有全套飞机生存设备,能够抵御 23 毫米以下子弹在关键区域的打击。阿帕奇弹药包括地狱火导弹(RF/SAL 版本)、2.75 英寸火箭弹(所有版本)和 30 毫米高爆燃烧弹 (HEI)。AH-64E 还具有有人/无人协同的互操作性 (LOI) 4 级能力。LOI 4 允许 AH-64E 接收无人机系统 (UAS) 视频、控制 UAS 的有效载荷并控制 UAS 的飞行路径。最初的 AH-64A 阿帕奇于 1984 年首次服役,现已从陆军库存中移除。所有剩余的 AH-64A 飞机都已纳入 AH-64D Block II 生产线。AH-64D Longbow Block II 的部署方式是新生产和再制造 AH-64A 飞机相结合。AH-64D 采用了 Longbow 火控雷达 (FCR),可在白天或夜晚、恶劣天气和战场遮蔽条件下使用。AH-64D 主要由桅杆安装的毫米波火控雷达、雷达频率干涉仪和雷达频率发射后不管的地狱火导弹组成。Block II 的生产已于 9 月结束。长弓的数字化目标捕获系统提供自动检测、定位、分类、优先排序和目标移交。AH-64D 驾驶舱经过重新设计,所有系统均数字化并实现多路复用。人力和人员整合计划机组人员站具有多功能显示器,可减少机组人员工作量并提高效率。AH-64D 为机动部队指挥官提供全天候、在任何条件下真正协调的快速射击(一分钟内打击 16 个独立目标)能力。阿帕奇机队的最新版本是 AH-64E 阿帕奇。AH-64E 计划于 2011 年 11 月交付了第一架飞机。AH-64E 项目与之前的阿帕奇维持项目类似,将更新或改造现有的空中
人造自旋冰系统是磁性纳米兰州的图案阵列,这些纳米岛被排列成沮丧的几何形状,并提供了对订购和出现物理学的见解。这些系统中的大多数已经在二维中实现,这主要是由于易于制造,但是随着高级纳米印刷的最新发展,三维人造自旋冰(ASI)结构已经成为可能,因此在他们的研究中提供了新的范式。此类人工设计的3D系统在实现可调的接地状态,新域墙壁拓扑,单极传播和高级设备概念(例如磁性赛道内存)方面提供了新的机会。到目前为止,具有磁力显微镜的3DASI结构的直接成像是探测这些系统物理的关键,但在测量的深度和分辨率的深度均受到限制,最终将测量限制在系统的最上层。在这项工作中,开发了一种方法,可以使用两光谱光刻,热蒸发和氧血浆暴露在光圈上制造3DASI晶格,从而使元素特异性结构和磁性信息探测使用X射线磁性磁性二氢二氢含量(XMCD)的元素特异性结构和磁信息。在反复的软X射线暴露下发现悬浮的聚合物 - 透明晶格是稳定的。对X射线吸收信号的分析允许重建磁性纳米线的复杂横截面并证明新月形的几何形状。在应用平面场后的XMCD图像测量表明,由于氧化而导致晶格表面上的磁矩减小,而在表面以下的子层次上保留了可测量的信号。
390 Interlocken Crescent, Suite 500 • Broomfield, CO 80021 USA | 303-530-1925 sierraspace.com/spaceflight-hardware-catalog | 电子邮件:spaceapps@sierraspace.com 警告 – 本文档不包含《国际武器贸易条例》(ITAR)或《出口管理条例》(EAR)所定义的技术数据或技术。本文讨论的产品和技术的出口、销售和提供均需获得美国政府的批准。
摘要:本文提出了一种共轴旋翼飞行器的滑模PID控制算法,之后采用Adams/MATLAB仿真与试验进行验证,结果表明该控制方法能够取得满意的效果。首先,当考虑上下旋翼间的气动干扰时,很难建立准确的数学模型,利用叶素理论和动态来流模型计算上下旋翼间的气动干扰和桨叶的挥动运动,其余不能准确建模的部分通过控制算法进行补偿。其次,将滑模控制算法与PID控制算法相结合对飞行器的姿态进行控制,其中,采用PID控制算法建立姿态与位置之间的关系,使飞行器能够更加平稳地飞行和悬停。第三,将飞行器的三维模型导入Adams,建立动力学仿真模型。然后在Simulink中建立控制器,并将控制器与动态仿真模型进行联合仿真,并通过仿真将滑模PID控制算法与传统PID控制算法进行比较,最后通过实验验证了滑模PID控制算法与传统PID控制算法的有效性。
以下标准反映了雇主对胜任工作岗位所需技能、知识和行为的要求。 入职要求 各个雇主将设定标准,但大多数候选人入职时将拥有四门 GCSE C 级(或同等水平)或以上(包括英语、数学和科学)。 如果雇主招聘的候选人的英语、数学和科学成绩未达到 C 级或以上,则必须确保候选人在完成学徒期之前达到此要求或 2 级同等水平。 学徒期通常为 36 个月,最短为 24 个月 角色简介 飞机维修装配工/技术人员负责维护各种类型的飞机,从小型飞机到客机、喷气式战斗机和直升机,包括民用和军用飞机。他们需要执行批准的维护流程以保持飞机的适航性。它涉及高技能、复杂和专业的工作,根据批准的要求和工作说明维护飞机系统,使用相关的手动工具和设备。他们必须遵守民用和/或军用监管和组织要求。他们必须能够研究数据源,确保在完成任务时准确填写所有飞机文档。他们既需要独立工作,也需要作为大型维护团队的一员工作。他们将展示使用适当流程识别和解决问题的能力
*本产品是为了减少挖掘机与附近工人接触风险而设计的安全辅助装置。 请注意,我们无法保证 100% 防止事故发生。 当您使用本服务时,请您签署本公司准备的《同意书》。 *请注意,如果相机镜头变脏,可能会发生故障。 *请小心挖掘机突然停止时引起的悬挂负载的摇摆。 *请注意,根据挖掘机的型号,本产品可能不适合使用。详情请联系我们。 ※根据机器和摄像机的安装位置,可能会有无法检测到的区域。 (摄像头盲区、超出检测范围等)
"0- +4161+)4 ,:=/; <0)41,751,- )6, 1<; ,-:1>)<1>-; 367?6 ); 155=6757,=4)<7:A ,:=/; 1 ; ):- :-+7/61B-, *A) +76;-:>-, *16,16/ ,75)16 76 <0- 41/);- ),)8<-: +-:-*476 :-;=4<16/ 16 41.-;)>16/ )6<1 +)6+-: <:-)<5-6<; 7: 07::1.1+ <-:)<7/-61+1-: ,-;81<- <0- /:7?16/ =;- 7. 16 <0- :-;-):+0 4)* )6, +4161+ <0- 5-+0)61;5; =;-; <7 :-+7/61B- 8:7<-16 ;=*;<:)<-; 0)>- -;+)8-, ,-.161<176 <7 ,)<- 41/);- +7584-@-; ;-4-+< 8:7<-16; .7: ,-/:),)<176 *A :-+7/61B16/ ,-/:76; ;8-+1.1+ )5167 )+1, ;-9=-6+-; ;=..1+1-6< <7 8:757<- =*19=1<16)<176 )6, ,-/:),)<176 ?0-6 -5*-,,-, 16 ) ;=*;<:)<- 0A87<0-;1B-, <0)< ,-/:76; .7: <0- <0)41,751,- *16,16/ ,75)16 7. +7=4, *- 16;<)44-, 76 1<; ;=*;<:)<-; >1) 87;< <:)6;4)<176)4 57,1.1+)<176; " ; %- ,1;+7>-:-, <0)< <-:516)4 +A+41+ 151,-; 8:->17=;4A 7>-:4773-, " ; <0)< ):1;- .:75 16<:)574-+=4): +A+41B)<176 7. /4=<)516- 7: );8):)/16- :-;1,=-; ):- 80A;1747/1+)4 ,-/:76; .7: 6;<)44)<176 7. <0- ,-/:76 <7 <0- <-:516=; 7. 8:7<-16; 16、=+-; ,-8-6,-6< =*19=1<16)<176 )6, ,-/:),)<176 16 >1<:7 )6, 16 +-44; #876 367+37=< 7. 7: 1601*1<176 7. <0- <0)41,751,- *16,16/ ,75)16 7. *A 4-6)41,751,- ?- 1,-6<1.1-, <0)< 57;< 7. <0- 8-8<1,-; *-):16/ <-:516)4 +A+41+ 151,-; 16+:-);- /47*)44A 16 +-44; %- )4;7 .7=6, <0)< <0- <-:516)4 +A+41+ 151,-; .7:5 ),>-6<1<17=;4A 76 80A;1747/1+)44A :-4->)6< <15-;+)4-; <0:7=/07=< <0- 0=5)6 8:7<-75- <7 )..7:, ),-/:76 <0)< 1; -6,7/-67=;4A :-+7/61B-, )6, :-57>-, *A "0- 1,-6<1.1+)<176 7. <-:516)4 +A+41+ 151,-; ); <0- .1:;< 6)<=:)44A 7++=::16/ ,-/:76 .7: 0); ;1/61.1+)6< 15841+)<176; )+:7;; 5=4<184- .1-4,; 78-616/ -@+1<16/ 6-? )>-6=-; 7. ;<=,A 76 <0- :)<176)41B)<176 7. +4161+)4 -..-+<; 7. <0)41,751,- )6, 4-6)41,751,- *1747/1+)4 :74-; 7. <0-;- <-:516)4 +A+41+ 151,- 57,1.1+)<176; <0- 1,-6<1.1+)<176 7. *175):3-:; )6, ,1;+7>-:A 7. 67>-4 16,=+-, ;=*;<:)<-; <0)< ):- 158)+<-, *A 41/)6, -6/)/-5-6< 7. 7: -@)584- <0- +76<:1*=<176 7. <0- -815-:; 7. <0- <-:516)4 +A+41+ 151,- <7 <0- *1747/1+)4 .=6+<176 7. <0- ,-/:76 )6, <0- 80A;1747/1+)4 :74- 7. 16 +758):1;76 <7 <0- ;-8):)<- -6)6<175-:; 7. <0- ; 1; )6 ):-) 7. .=<=:- ->)4=)<176 ; <-:516)4 +A+41+ 151,- ;1<-; )6, ;=*;<:)<-; *-+75- 57:- +4-):4A ,-.16-, .=:<0-: ;<=,1-; ?144 -4=+1,)<- <0- 15841+)<176; 7. <0-;- " ; )6, <0-1: :74-; 16 8:7<-16 :-/=4)<176 )6, +-44=4): ;1/6)416/ ?1<0 :-;8-+< <7 5-+0)61;5; :-/=4)<-, *A
保险丝选择似乎很简单,你只需选择一个额定电流略高于最坏情况系统工作电流的保险丝即可。不幸的是,事情没那么简单。需要考虑工作电流和应用温度的降额问题。开机和其他系统操作(如处理器速度变化或电机启动)会导致电流激增或尖峰,在选择保险丝时也需要考虑这些因素。因此,为你的应用选择合适的保险丝并不像了解系统所消耗的标称电流那么简单。
近年来,各种基于载体的药物输送系统的设计和制造策略已迅速建立并应用于癌症治疗。这些系统对当前的癌症治疗贡献巨大,但需要进一步发展以消除药物负载能力低和严重副作用等障碍。为了实现更好的药物输送,我们提出了一种基于分子结构的易于制造的药物自输送系统的创新策略,该系统可用于共输送姜黄素类化合物和喜树碱的所有含氮衍生物,以更好地靶向癌症治疗并最大限度地减少副作用。形成机制研究表明,喜树碱衍生物和姜黄素类化合物的刚性平面结构以及相关的离去氢使它们能够在适当的条件下组装成纳米颗粒。这些纳米颗粒在不同条件下表现出稳定的粒径(100纳米)和可调的表面电荷,从正常生理条件(pH 7.4)下的约-10 mV增加到酸性肿瘤环境下的+40 mV。此外,小鼠体内实验表明,与伊立替康(喜树碱衍生物)相比,联合给药的伊立替康姜黄素纳米颗粒显著增强了肺和胆囊的靶向性,改善了巨噬细胞清除逃逸,改善了结直肠癌治疗,消除了危及生命的腹泻,为更好的靶向化疗和临床转化带来了希望。最后,基于结构设计的药物自递送系统策略可能会激发更多类似的自递送纳米系统的研究和发现,以用于更广泛的药物应用。