摘要:Van der Waals(VDW)磁铁很有希望,因为它们具有掺杂或合金组成的可调磁性能,其中磁相互作用的强度,它们的对称性和磁各向异性可以根据所需的应用来调节。到目前为止,大多数基于VDW磁铁的自旋设备都限于低温温度,其磁各向异性有利于平面外或倾斜的磁化方向。在这里,我们报告了室温外侧自旋阀设备,其平面内磁化和VDW Ferromagnet的自旋极化(CO 0.15 Fe 0.85)5 GETE 2(CFGT)在异性捕获岩中使用墨烯。密度功能理论(DFT)计算表明,各向异性的幅度取决于CO浓度,是由CO在最外面的FE层中取代引起的。磁化测量结果揭示了上述CFGT中的室温铁电磁作用,并在室温下清除了延迟。由CFGT纳米层和石墨烯组成的异质结构用于实验实现旋转阀装置的基本构件,例如有效的自旋注入和检测。对自旋转运和汉尔自旋进液测量的进一步分析表明,在与石墨烯界面处的界面上具有负自旋极化,并由计算出的CFGT状态的自旋偏振密度支持。在室温下,CFGT的平面磁化证明了其在石墨烯侧旋转式设备中的有用性,从而揭示了其在自旋技术中的潜在应用。关键字:范德华磁铁,自旋阀,石墨烯,范德华异质结构,2D磁铁,平面磁化,自旋极化M
4学院科技大学校长。摘要在本文中,铝业行业应用摩擦焊接用于维修操作。修复阳极轭的过程是通过传统方式焊接进行的,被旋转摩擦焊接的方法所取代,因为摩擦焊接机的设计,制造和组装了,并执行了焊接过程。选择用于研究和实验的材料是低碳钢S37和Rod Dia。ϕ 130 mm。使用了配备有75kW电动机的电动机的旋转摩擦机的设置。旋转摩擦的焊接过程是在阳极式轭引脚上进行的,该旋转式轭钉在被融合焊接之前进行焊接之前。检查了换针旋转摩擦焊接中微结构和拉伸强度的特征。微观结构测试显示,与由于重结晶和将粗铁氧体相变成晶粒精制铁素体铅层相比,与熔融焊接焊接相比,摩擦焊接销的晶粒尺寸较小。由于退火效果,摩擦焊接引脚的拉伸强度高于融合焊接销的拉伸强度。关键字旋转摩擦焊接,铁质不锈钢,拉伸强度,锻造压力,微结构。国际环境使其能够将产品出口到国外。从这个角度来看,埃及铝制公司渴望在提取铝的各种过程中探讨现代方法,以实现国际引言政府和国际机构对更好的环境以及减少各种行业的环境有害排放的永久愿望已成为公司管理的主要关注点,尤其是那些将其产品出口到国外的人,因为有法律可以在制造这些产品期间跟踪生产公司并评估它们以符合标准。
抽象空间动力卫星(SPS)是在太空中利用太阳能的巨大航天器。由于规模巨大,巨大的质量和高力量,因此存在许多技术困难。对于GW SPS系统,太空中产生的电力将超过2 gW,太阳阵列的整个区域将是几平方公里。空间中的高功率发电,传输和管理成为一个巨大的挑战。在论文中,提出了MR-SPS概念的主要方案,并引入了两个重要的子系统,太阳能收集和转换(SECC),电力传输和管理(PTM)。SECC子系统包括五十个太阳能阵列。每个太阳能子阵列由十二个太阳阵列模块组成。每个太阳能阵列的面积约为0.12 km 2。太阳能阵列将电力传输到安装在MR-SPS主结构上的电缆,该电源通过100个中动力旋转接头。PTM子系统转换,传输和分发SECC子系统的输出电力。大部分电力传输到天线,并分布在天线中。剩余的电力将传输并分配给服务设备以进行SPS的操作。采用了分布式和集中式高压PTM的混合,以满足SPS上电动设备电源的需求。分析了典型的空间环境会影响高功率电动系统。需要研究和解决关键技术,包括高较高的,长寿的薄膜GAAS PV电池,超大型 - 高电压(500 V)太阳能阵列,高功率导电旋转式关节,超高电压(20 kV)电缆(20 kV)电缆,高较高的电池,高较高的乘积,较高的平台,较高的速度,以及较高的速度和较高的转换,以及及好的转换,以及。
简介。最近发现的Altermagnetism [1-8]通过引入第三种磁性,开辟了新的凝结物理学研究领域[9],除了两种长期已知的磁性:铁磁性和抗逆性磁性。altermagnetism在非相互作用的电子带结构中的非同性旋转分裂引起的材料中出现,因此并不是由于电子相互作用而引起的,通常与磁性有关。Altermagnetism背后的非常规机制也导致完全不同的对称特性。在altermagnets中,由于克莱默的自旋变性而出现的磁化值是动量依赖性的,符号变化值和节点。值得注意的是,由于符号变化,净磁化在Altermagnet中仍然为零。替代磁性已经被提议存在于许多材料中,其中大多数显示了d-Wave-symerry [9],包括父母蛋饼材料LA 2 CUO 4 [3]。由于掺杂的铜材料是带有自旋的d波配对对称性的固有超导体[10,11],因此在Altermagnets中具有D-波超导性的诱人前景。几乎所有已知的超导体都被Bardeen,Cooper和Schrieffer(BCS)[12]理论很好地描述了,其中具有相反动量K和 - K的电子以及相反的旋转↑和↓对在旋转式结合中进行。因此,增加自旋分裂最终会破坏BCS状态。当旋转退化性破裂时,这些自旋平线对库珀对变得不那么能量有利,由于材料中存在固有的净化杂志而导致的自旋分裂产生了良好的自旋分裂。仍然,通过形成有限的质量中心动量,超导性已被证明可以为更大的外部磁场而生存,从而导致无限型摩托车超导性,
目录 策略页 策略页 ABC 头脑风暴 11 配对总结 27 锚图 11 停车场 27 注释 12 传递白板 27 预期指南 14 照片分析 28 逆向笔记 14 加/减法 28 头脑风暴 15 表扬-问题-润色 28 旋转式头脑风暴 15 预读计划 29 访谈圈 15 预览和预测 29 文本编码 16 QAR-问答关系 30 对话词干 16 象限卡/弗雷尔模型 31 康奈尔笔记 16 RAFT 33 立方体 17 互惠教学(已修改) 33 讨论网 18 请求 35 入口/出口单 18 说点什么 35 权益棒 19 为我保留最后一句话 35鱼缸 19 语义特征分析 36 拳打五中 20 语义图 37 五字预测 20 打雪仗(滚雪球) 37 GIST 21 苏格拉底研讨会 37 ICE 21 排序 39 插入 21 星星和愿望 39 访谈回复 22 餐桌谈话 39 拼图 22 大声思考 39 记图表 22 思考-写作-配对-分享 40 记笔记 23 3-2-1 40 日记回复 23 三分钟暂停/回顾 40 KIM 24 轮流发言 41 KWL 24 可视化 41 列表-组-标签 25 词汇知识评级 41 磁铁摘要 25 X 标记点 42 边注 25 最模糊的点 26 互联网资源 42 笔记策略 26单页 26
1弗劳恩霍夫太阳能系统ISE ISE,Heidenhofstraße2,79110 Freiburg,德国2 ASYS Automation Systems GmbH,Benzstr。10,89160德国Dornstadt 3 Gallus Ferd。 rüeschag,Harzbüchelstrasse34,9016 St. Gallen,瑞士4 Lehner Engineering GmbH,Ebnettstrasse 18,9032,瑞士5 1,0676德国Bitterfeld-Wolfen 7 Kurt Zecher GmbH,Görlitzerstr 2,33098德国Paderborn 8技术大学达姆斯塔特,Magdalenenstraße2,64289 Darmstadt,德国,德国9现在,现在有:Thieme Gmbh&Co。KG,Robert-Bosch-Bosch-Straße1,79331 teneningen,Dergem摘要:在研究项目“摇滚明星”中开发的创新的高通量旋转式示范机上制造的钝化发射器和后触点(PERC)太阳能电池。 该机器旨在使用新开发的航天飞机运输系统执行最多600 mm/s的硅太阳能电池的金属化 在第一个实验中,多晶硅(MC-SI)PERC太阳能电池在后侧金属,旋转筛网印刷获得的平均转换效率为η= 19.3%,该效率与带有筛网印刷后侧的参考单元的水平相同金属化(η= 19.3%)。 此外,提出了一个9个细胞示范器模块,其中显示了在演示器和Smartwire(SWCT)互连上部分金属金属的细胞。10,89160德国Dornstadt 3 Gallus Ferd。rüeschag,Harzbüchelstrasse34,9016 St. Gallen,瑞士4 Lehner Engineering GmbH,Ebnettstrasse 18,9032,瑞士5 1,0676德国Bitterfeld-Wolfen 7 Kurt Zecher GmbH,Görlitzerstr2,33098德国Paderborn 8技术大学达姆斯塔特,Magdalenenstraße2,64289 Darmstadt,德国,德国9现在,现在有:Thieme Gmbh&Co。KG,Robert-Bosch-Bosch-Straße1,79331 teneningen,Dergem摘要:在研究项目“摇滚明星”中开发的创新的高通量旋转式示范机上制造的钝化发射器和后触点(PERC)太阳能电池。该机器旨在使用新开发的航天飞机运输系统执行最多600 mm/s的硅太阳能电池的金属化在第一个实验中,多晶硅(MC-SI)PERC太阳能电池在后侧金属,旋转筛网印刷获得的平均转换效率为η= 19.3%,该效率与带有筛网印刷后侧的参考单元的水平相同金属化(η= 19.3%)。此外,提出了一个9个细胞示范器模块,其中显示了在演示器和Smartwire(SWCT)互连上部分金属金属的细胞。关键字:硅太阳能电池,制造和加工,PERC,金属化,旋转印刷1简介平面丝网印刷(FSP)是晶体硅(SI)太阳能电池的最新技术。尽管在过去几年内生产率取得了显着进步,但FSP工艺几乎接近技术限制,而吞吐量的进一步增加。应对这一挑战的一种非常有前途的方法是应用高生产性旋转印刷方法,即旋转丝网印刷(RSP)和Flexographic Printing(FXP)。在资助的研究项目中»摇滚明星«(合同号13N13512),一个项目合作伙伴和研究机构的项目构成,已经为开发旋转印刷演示机的雄心勃勃的目标设定了一个雄心勃勃的目标,该机器能够实现高达600 mm/s的太阳能电池的金属化,这与每小时8000 Wafers of 8000 wafers on Single of 600 mm/s的印刷速度相当于。在项目中,已经在开发材料,打印过程和机器平台方面做出了巨大的努力。在这项工作中,我们介绍了»摇滚之星«演示器的概念以及第一个PERC太阳能电池的I-V-结果,这些perc太阳能电池已使用演示器机器上的旋转丝网印刷单元进行了部分金属化。此外,还提出了通过互连»岩石星«Perc太阳能电池与智能Wire Interonnection技术(SWCT)制造的9细胞演示器模块。2摇滚乐演示器平台2.1演示器机器»摇滚明星的主要目标是开发用于硅太阳能电池高通量金属化的创新机器平台。雄心勃勃是要根据对所应用的旋转印刷方法进行基本和激烈评估的基础来实现具有高技术准备水平(TRL)[1] [1]的机器[2-6]。
小计 2 ALLIGARE LLC 179011 概要除草剂 12/31/2025 171173 ALLIGARE MOJAVE 70 EG 12/31/2025 173810 BALLAST 除草剂 12/31/2025 173809 GRASSMASTER 除草剂12/31/2025 170527 TASKMASTER 12/31/2025 168272 主线除草剂 12/31/2025 168450 通道除草剂 12/31/2025 105915 ALLIGARE PANORAMIC 2 SL 12/31/2025 105930 ALLIGARE氟里酮12/31/2025 104545 ALLIGARE PRESCOTT 除草剂 12/31/2025 104546 ALLIGARE SFM 75 12/31/2025 104868 旋转式 2SL 12/31/2025 152109 HYVAR X IVM 除草剂12/31/2025 105675 ALLIGARE 麦草畏+2,4-D DMA 12/31/2025 100910 ALLIGARE 干磷酸盐 75SG 12/31/2025 102707 BROMACIL/DIVRON 40/40 12/31/2025 102708 BROMACIL 80 2025 年 12 月 31 日100054 ALLIGARE 灭草烟 4SL 12/31/2025 140250 ALLIGARE TRIUMPH XTR 除草剂 12/31/2025 156207 ALLIGARE FLUMIGARD SC 除草剂 12/31/2025 145272 FLUMIGARD 除草剂12/31/2025 140247 ALLIGARE CLEARGRAZE 牧场除草剂 12/31/2025 156970 ALLIGARE TRIUMPH 即用型除草剂 12/31/2025 156208 PROMENADE SC 除草剂 12/31/2025 152108 KROVAR IVM 除草剂12/31/2025 159045 油石除草剂 12/31/2025 152110 索诺拉除草剂 12/31/2025 112584 BOULDER 6.3 12/31/2025 140249 ALLIGARE IMOX 除草剂12/31/2025 142867 Alligare Triumph 22K 除草剂 12/31/2025 108166 ARGOS 12/31/2025
背景:两种mangostin化合物,γ-糖蛋白和α-mangostin,通过抑制细胞增殖和细胞迁移而显示出抗癌的特性。转移性三阴性乳腺癌(TNBC)细胞,包括MDA-MB-231,高度表达的C-X-C趋化因子受体4型(CXCR4),以维持活性氧(ROS)和细胞迁移。目的:进行了这项研究,以分析和比较γ-蒙植物素和α-山基蛋白的不同作用模式为MDA -MB -231中CXCR4的抗移民作用,作为TNBC细胞的模型。方法:这项研究研究了使用一系列测定方法研究γ-超胞素和α-横轴蛋白的作用,包括细胞计数KIT-8(CCK-8)测定法对细胞毒性,伤口愈合测定,迁移研究,定量实时聚合酶链(QRT-PCR)的迁移和流动性分析的旋转式分析的迁移研究,并进行了脉冲分析。化合物和CXCR4之间的结合。结果:发现分别为γ -Mangostin和MDA -MB 231细胞中的γ -Mangostin和α -Mangostin的最大抑制浓度(IC50)值分别为25和20 µm。此外,将10 µm的浓度用于迁移测定。γ-山角蛋白和α-山臂蛋白都在24小时内显着抑制了细胞迁移。目前的基因表达研究表明,在γ-曼格汀治疗中,与α -Mangostin的关键基因,即Farp,CxCR4和LPHN2的下调,但不是α -Mangostin。此外,γ-山角蛋白和α-山角蛋白都增加了细胞ROS的产生,强调了γ-山角蛋白和α-山角蛋白ROS升高的相同作用,以抑制癌细胞迁移。分子对接模拟进一步表明γ-山臂蛋白和α -Mangostin与高亲和力的CXCR4之间存在潜在的相互作用。结论:这些发现表明,γ-山角蛋白和α -Mangostin都抑制了乳腺癌细胞的迁移并诱导MDA -MB -231细胞中的细胞ROS水平。值得注意的是,γ-Mangostin抑制了CXCR4 mRNA表达,这可能与其活性相关以抑制MDA-MB-231细胞迁移。
癫痫发作通常预示着神经胶质瘤的临床外观或出现在后期。在脑恶性肿瘤中剖析其精确的进化和细胞发病机理,可以为这些高度药剂敏感的癫痫的分期疗法的发展提供信息。免疫缺陷异种移植模型的研究确定了局部神经元间丧失和过量的神经胶质释放是网络抑制作用的主要因素,但是尚不清楚脑周围微环境中的过度刺激性在脑周围微环境中的过度症状,尚不清楚。我们通过子宫抑制基因的子宫缺失在WT小鼠中产生神经胶质瘤,并在肿瘤浸润期间通过体内电生理学和GCAMP7钙像成像在肿瘤浸润过程中串行监测的皮质性癫痫发生,从而揭示了从过度刺激性到旋转式seizers i摄取的可再生性进展。在癫痫发作之前很久,与抑制细胞的损失及其保护性脚手架,胶质谷氨酸抗毒剂XCT表达和反应性星形胶质细胞增多的同时,我们检测到局部的IBA1iba1Þ小胶质细胞炎症,这些炎症会加剧,后来远远超出了肿瘤的界限。迄今未识别的皮质扩散去极化发作,经常从周围区域产生,可能为短暂神经系统缺陷提供了一种机制。对神经胶质XCT活性的早期阻断抑制了以后的癫痫发作,并通过删除与微管相关的蛋白Tau抑制癫痫生成和癫痫发作的分子标记来降低宿主脑兴奋性。我们的研究证实了异种移植肿瘤驱动的病理生物学,并揭示了肿瘤相关的癫痫发生的早期和晚期成分在可遗传触觉的,免疫能力的小鼠胶质瘤模型中,从而使肿瘤的复杂解剖与宿主的致病性癫痫发作机制的复杂解剖。
1应用地质学:煤层,石油地质学,地貌学,古生物学,计算地球科学,与人工智能和机器学习的地理学,碳酸盐沉积学,经济地球学,生物地质学,环境地质地质学,地质学,医学地质学,层植物,囊地地质地质,矿物质地质学,矿物质地质学2:处理/反转,人工智能/机器学习和深度学习,并在地球物理学,电气/MT/电磁方法中应用,勘探地震,遥感& GIS应用,测量良好/岩石物理/岩石物理学,海洋地球物理探索,地球和行星科学,大气科学,物理海洋学以及辐射方法的应用。3化学与化学生物学:物理化学,无机化学和有机化学,化学生物学,制剂和药物递送,生物信息学,蛋白质组学和其他“ OMICS”技术。4化学工程:分子模拟,分子热力学,工艺系统工程和控制,生物处理工程和生物系统工程,生物传感器,绿色能源,过程安全和危害,循环经济,电化学过程,运输过程,运输过程,材料科学,催化和反应工程,AI&用于化学工程,分离过程,胶体和界面的ML,过程优化5土木工程结构工程专业:结构工程,结构动力和地震工程,结构健康监测,建筑材料和其他相关领域。岩土工程专业:岩土工程,地理环境工程,岩石力学和其他相关领域。水资源工程专业:水资源工程,液压,储层优化,环境建模&其他相关领域。运输工程专业:路面工程,交通工程,运输计划和其他相关领域。6 Computer Science and Engineering: Artificial Intelligence, Big Data Analytics, Bioinformatics, Cloud/Fog Computing, Computer Architecture, Computer Networks, Wireless Networks, Databases / Distributed Databases, Data Mining, Embedded Systems, High Performance Computing, Image Processing, Computer Vision, Information Retrieval, Natural Language Processing, Blockchains, Distributed Computing, Information Security, Internet of Things, Language Processors/Compiler Design, Machine Learning,编程语言,软计算/优化,软件工程,理论计算机科学,游戏理论,VLSI设计,量子计算7电气工程学原理7电气工程:生物信息学,生物医学工程,控制,仪器,机器人技术,机器人技术,电气汽车技术,电气技术,电气机器,机器,机器和机器和电动机,电力,电力系统,电力系统,电力系统,旋转式,高音射击,高音,高音射击。9环境科学与工程:空气污染,大气科学与气候变化,分水岭管理,自然资源管理,环境建模,环境经济学,环境社会学,环境可持续性,环境政策研究,职业健康与安全,噪音与振动,噪音与振动,林业,林业,8电子工程:量子技术; ASIC设计;高速互连;集成电路和系统设计;电子系统设计; VLSI包装;新兴的记忆设备和技术; RF电路&系统设计,EMI/EMC,雷达,微波设备&系统设计,微波成像,生物电磁学,芯片上的天线,RF/光学信号处理,THZ技术,高功率微波设备,5G/6G通信系统,物联网和嵌入式系统设计,统计信号处理,深度学习,深度学习&人工智能,集成光子学,光学通信,电子/光子材料工程。