不同细胞群体的位点特异性遗传和表观遗传靶向是分子神经科学的核心目标,对于理解基因调节机制至关重要,这些基因调节机制是基于复杂的表型和行为的基础。虽然最近的技术进步已经实现了对基因表达的前所未有的控制,但其中许多方法都集中在选定的模型生物上和/或需要针对不同应用的劳动密集型定制。群集定期插入短质体重复序列(基于CRISPR)的系统的简单性和模块化已改变了基因组编辑并扩展了基因调节工具箱。但是,几乎没有可用于神经元细胞选择性CRISPR调节的工具。我们设计,验证和优化的CRISPR激活(CRISPRA)和CRISPR干扰(CRISPRI)系统用于CRE重组酶依赖性基因调节。出乎意料的是,基于传统的双流传式开放阅读框(DIO)策略的CRISPRA系统即使没有CRE也会显示出漏水的靶基因诱导。因此,我们开发了一种含有内含子的CRE依赖性CRISPRA系统(SVI-DIO-DCAS9-VPR),该系统减轻了泄漏基因诱导,并在HEK293T细胞和大鼠原发性神经元培养物中的内源基因上的传统DIO系统表现优于传统的DIO系统。使用基因特异性CRISPR SGRNA,我们证明了SVI-DIO-DCAS9-VPR可以以CRE特异性方式激活许多大鼠或人类基因(GRM2,TENT5B,FOS,SSTR2和GADD45B)。为了说明该工具的多功能性,我们创建了一个平行的CRISPRI构建体,该构建体仅在CRE存在下仅在HEK293T细胞中成功抑制了荧光素酶报告器的表达。这些结果为跨不同模型系统的CRE依赖性CRISPR-DCAS9方法提供了强大的框架,并在与常见的CRE驱动线或通过病毒载体交付时实现了细胞特异性靶向。
摘要。目的:本研究探讨颅内电极捕获的神经信号的语音解码。大多数先前的研究只能处理 2D 网格上的电极(即脑皮层电图或 ECoG 阵列)和来自单个患者的数据。我们的目标是设计一个深度学习模型架构,可以同时适应表面(ECoG)和深度(立体定向 EEG 或 sEEG)电极。该架构应允许使用来自多个参与者的数据进行训练,这些参与者的电极位置变化很大,并且训练后的模型应该在训练期间未见过的参与者身上表现良好。方法:我们提出了一种名为 SwinTW 的新型基于变压器的模型架构,该架构可以利用任意位置的电极在皮层上的 3D 位置而不是它们在 2D 网格上的位置来处理它们。我们使用来自单个参与者的数据训练特定于主题的模型,并利用来自多个参与者的数据训练多患者模型。主要结果:仅使用低密度 8x8 ECoG 数据的受试者特定模型在 N=43 名参与者中实现了高解码皮尔逊相关系数与地面实况频谱图 (PCC=0.817),优于我们之前的卷积 ResNet 模型和 3D Swin Transformer 模型。在每个参与者 (N=39) 中加入额外的条带、深度和网格电极可带来进一步的改进 (PCC=0.838)。对于只有 sEEG 电极的参与者 (N=9),受试者特定模型仍然具有可比的性能,平均 PCC=0.798。多受试者模型在看不见的参与者身上实现了高性能,在留一交叉验证中平均 PCC=0.765。意义:提出的 SwinTW 解码器使未来的语音神经假体能够利用任何对特定参与者来说临床上最佳或可行的电极位置,包括仅使用更常规的深度电极
摘要。目前标记的脑电图 (EEG) 记录很少,并且不同的数据集通常具有不兼容的设置(例如,各种采样率、通道数、事件长度等)。这些问题阻碍了机器学习从业者训练通用 EEG 模型,这些模型可以通过迁移学习重新用于特定的 EEG 分类任务。我们提出了一种具有空间金字塔池化层的深度卷积神经网络架构,该架构能够接收不同维度的 EEG 信号并将其特征提取为固定大小的向量。该模型在大型未标记数据集上使用对比自监督学习任务进行训练。我们引入了一组 EEG 信号增强技术来生成大量样本对来训练特征提取器。然后我们将训练好的特征提取器迁移到新的下游任务。实验结果 1
遗传性视网膜病变是一种毁灭性疾病,在大多数情况下缺乏治疗选择。由于此类疾病中发现的突变种类繁多,因此无论潜在的遗传病变如何,减轻病理生理的疾病修饰疗法都是可取的。我们测试了一种基于系统药理学的策略,该策略通过 G 蛋白偶联受体 (GPCR) 调节抑制细胞内 cAMP 和 Ca2+ 活性,使用坦索罗辛、美托洛尔和溴隐亭共同给药。该治疗改善了 Pde6 β rd10 和 RhoP23H/WT 视网膜色素变性小鼠的视锥光感受器功能并减缓了退化。在 PDE6A-/- 狗中,经过 7 个月的药物输注后,视锥变性得到适度缓解。该治疗还改善了 Leber 先天性黑蒙 Rpe65-/- 小鼠模型中的视杆通路功能,但不能防止视锥变性。 RNA 测序分析表明,接受药物治疗的 Rpe65-/- 和 rd10 小鼠的代谢功能得到改善。我们的数据表明,通过多种受体作用改变第二信使水平的儿茶酚胺能 GPCR 药物组合可提供一种潜在的改善视网膜变性的疾病疗法。
量子信息利用独立和纠缠的量子系统来执行一系列信息处理任务,这比传统系统更具优势 [1]。量子通信是量子信息的一个主要分支,其目的是通过通信链路(光纤或自由空间信道)在远程方(通常称为 Alice 和 Bob)之间忠实地传输光子量子态 [2]。量子密钥分发 (QKD) 是一种重要的量子通信协议,其目标是在 Alice 和 Bob 之间远程生成共享密钥 [3-5]。其有效性已在长距离上得到证实 [6],这对于实际应用来说是理想的。过去,大多数量子通信实验都集中在点对点应用上,直到最近,人们对网络和多用户应用的兴趣才有所增加,并将大量精力集中在支持未来量子计算机网络的底层通信基础设施上,即所谓的量子互联网 [7]。与标准通信网络一样,路由将是实现单光子动态功能的一项基本功能。实现具有潜在快速响应时间的单光子路由器的直接方法是使用干涉仪 [8 – 11]。在 [8] 中,使用在其一条臂中带有相位调制器的马赫-曾德尔干涉仪 (MZI) 将单光子按需路由到其一个输出。基于 MZI 设计的具有两个输入和两个输出的单光子开关也已提出 [9]。在 [10] 中,还提出了一种基于 MZI 的耦合器,其中光子可以作为可调开关以任何分光比路由。在这些论文中,提出了三种路由配置,由于使用 MZI,所有这些配置都需要额外的主动相位稳定系统。为了获得更稳定的设计,另一种配置采用了 Sagnac 光纤
现代仪器系统和数据采集系统需要低到中等分辨率、中速的模数转换器 (ADC)。由于这些系统大多是便携式的,因此 ADC 规范对功率和面积参数有严格的要求。尽管传统的逐次逼近寄存器 (SAR) ADC 因结构简单、模拟模块少而在这些应用中很受欢迎,但它们占用的芯片面积很大。传统 SAR ADC 采用二进制加权电容电荷再分配数模转换器 (DAC) [1,2]。传统电容电荷再分配 DAC 的两个主要限制是转换速度和庞大的电容阵列。较大的 MSB 电容限制了转换速度。这种架构中使用的 DAC 电容阵列变得非常笨重。文献中提出了一些新方法来提高 SAR ADC 的速度 [3,4]。此外,还提出了一些用于 SAR ADC 的面积效率高的 DAC 架构 [5-7]。其中一些 ADC 在性能系数 (FOM) 方面优于其他 ADC,但由于所用 DAC 架构的类型,面积效率 (AE) 参数会降低。[8、9] 中的 SAR ADC 将分辨率可变性融入传统电荷再分配 ADC,以适应需要不同分辨率的多种信号,适用于生物医学信号采集系统等应用。
图 1 研究设计。38 名健康参与者(17 名男性)接受了包括多导睡眠图在内的全面筛查过程,以排除任何躯体、精神或睡眠障碍的病史或患病情况。在实验之夜 21:00 之前进行三项任务(注意力表现、程序记忆 - 镜像追踪任务 [MT]、陈述性记忆 - 配对联想词表任务 [WP])的采集会话,然后在早上 09:00 进行一次检索会话。所有参与者在进行多导睡眠图后,在 3 特斯拉扫描仪上接受高分辨率磁共振成像 (MRI),平均间隔为 30.2 ± 19.8 天。MT,镜像追踪任务;WP,配对联想词表任务;SCR,筛查会话;MRI,磁共振成像
摘要的目标是减肥手术来诱导2型糖尿病(T2D)中的体重减轻和血糖稳定性。由于HBA1C迅速下降,这可能导致糖尿病性视网膜病(DR)的早期恶化。在这项研究中,我们评估了整个T2D接受减肥手术的人的短期和长期DR开发的风险,并需要进行眼干预。方法该研究包括一个基于国家的,基于登记册的人群,其中T2D筛选为DR。在手术之日(指数日期)与非肺炎对照的年龄,性别和DR水平相匹配。我们提取了有关DR水平,内科和门诊治疗,药物处方和实验室价值的信息。我们在随访(6个月和36个月)时评估了DR(事件和进行性DR)的恶化。参加了238,967名T2D的人,参加了糖尿病眼镜筛查,我们确定了553例接受了减肥手术(0.2%)和2677个非肺炎对照。中位年龄为49岁,女性为63%。病例的合并症更多,HBA1C较低,并且比在索引日期的对照组更频繁地使用降糖和降压药物。在完全调整的逻辑回归模型中,与对照组相比,病例恶化的风险没有显着差异,短期(或0.41 [CI 95%0.13; 1.33; 1.33],p = 0.14),也不是长期(或0.64 [或0.64 [CI 95%0.33; 1.24; 1.24; 1.24],P = 0.18)。在这项全国研究中得出结论,减肥手术与短期或长期DR恶化的风险增加。
1 1非洲疼痛研究计划,麻醉和围手术医学系,神经科学研究所,开普敦大学,南非开普敦大学2 HIV镇2 HIV心理健康研究部,神经科学研究院,神经科学研究所,开普敦大学,开普敦大学,开普敦,开普敦大学,南非3号,伦敦市,伦敦,伦敦,伦敦,,开普敦大学,开普敦大学,开普敦大学,开普敦,伦敦,伦敦,伦敦,伦敦,伦敦,伦敦。 澳大利亚。 5光子学研究所,阿德莱德大学,南澳大利亚,澳大利亚。 6 Division of Allergy and Clinical Immunology, Department of Medicine, Groote Schuur Hospital, University of Cape Town, Rondebosch, South Africa 7 Allergy and Immunology Unit, University of Cape Town Lung Institute, University of Cape Town, Cape Town, South Africa 8 Chronic Pain and Fatigue Research Center, Department of Anesthesiology, Michigan Medicine, University of Michigan, Ann Arbor, Michigan, USA 9 Department美国马萨诸塞州波士顿的哈佛医学院麻醉,围手术期和止痛药1非洲疼痛研究计划,麻醉和围手术医学系,神经科学研究所,开普敦大学,南非开普敦大学2 HIV镇2 HIV心理健康研究部,神经科学研究院,神经科学研究所,开普敦大学,开普敦大学,开普敦,开普敦大学,南非3号,伦敦市,伦敦,伦敦,伦敦,,开普敦大学,开普敦大学,开普敦大学,开普敦,伦敦,伦敦,伦敦,伦敦,伦敦,伦敦。 澳大利亚。5光子学研究所,阿德莱德大学,南澳大利亚,澳大利亚。 6 Division of Allergy and Clinical Immunology, Department of Medicine, Groote Schuur Hospital, University of Cape Town, Rondebosch, South Africa 7 Allergy and Immunology Unit, University of Cape Town Lung Institute, University of Cape Town, Cape Town, South Africa 8 Chronic Pain and Fatigue Research Center, Department of Anesthesiology, Michigan Medicine, University of Michigan, Ann Arbor, Michigan, USA 9 Department美国马萨诸塞州波士顿的哈佛医学院麻醉,围手术期和止痛药5光子学研究所,阿德莱德大学,南澳大利亚,澳大利亚。6 Division of Allergy and Clinical Immunology, Department of Medicine, Groote Schuur Hospital, University of Cape Town, Rondebosch, South Africa 7 Allergy and Immunology Unit, University of Cape Town Lung Institute, University of Cape Town, Cape Town, South Africa 8 Chronic Pain and Fatigue Research Center, Department of Anesthesiology, Michigan Medicine, University of Michigan, Ann Arbor, Michigan, USA 9 Department美国马萨诸塞州波士顿的哈佛医学院麻醉,围手术期和止痛药
吞咽困难、反流、骨盆肢体本体感觉丧失和进行性截瘫。2,5,6 ILP 主要影响年龄较大(> 9 岁)的大型至巨型犬。6 尽管许多品种都有 ILP 的记录,但大约 70% 的病例见于拉布拉多猎犬。2,6,7 ILP 与人类的遗传性周围神经病(包括 2 型腓骨肌萎缩症 (CMT) 和远端遗传性运动神经病)有许多相同的病理生理、组织病理学和临床特征,使其成为遗传性周围神经病有希望的自发性大型动物疾病模型候选者。神经丝轻链 (NfL) 浓度可作为轴突变性的标志,在人类中是多种神经退行性疾病的潜在生物标志物。 8 NfL 是 4 个亚基之一,另外 3 个是神经丝中链、神经丝重链和 α-internexin,它们组成了形成神经元细胞骨架的杂聚物神经丝蛋白。9 所有 4 个亚基共同作用,帮助轴突直径的生长并充当轴突支架。9 已证明 NfL 稳定、可溶,并且在脑脊液和血浆中含量丰富。9,10 虽然在人体正常衰老过程中脑脊液和血液中的 NfL 会增加,但在几种人类神经退行性疾病中也发现了更高水平的 NfL。11 目前,NfL 用于辅助诊断、告知预后和监测各种人类神经退行性疾病的治疗反应。11–13 使用 NfL 跟踪疾病进展的潜力将允许进行更强有力的临床试验和治疗反应监测。 14 在狗中,可以有效测量血浆神经丝轻链 (pNfL),并且已证明在患有影响中枢神经系统疾病的狗中会增加。15,16 目前尚不清楚 pNfL 是否对狗的任何周围神经病变具有临床实用性。本研究的目的是调查与老年对照群体相比,受 ILP 影响的拉布拉多猎犬的 pNfL 浓度是否发生了改变。第二个目的是调查研究人群中 pNfL、年龄、身高、体重和身体质量指数 (BMI) 之间的关系。我们的假设是,与由中型到大型犬组成的年龄匹配的对照群体相比,受 ILP 影响的拉布拉多猎犬的 pNfL 浓度会显著更高。我们的第二个假设是,在由老年犬组成的研究群体中,年龄、身高、体重或 BMI 与 pNfL 浓度之间没有相关性。