95 岁的罗纳德·R·(罗恩)·塔斯克于 2023 年 4 月 19 日在多伦多他住了 50 年的家附近安详离世,他度过了漫长而富有成效的一生。2003 年,他深爱的妻子玛丽·M·塔斯克(本姓克雷格)先他而去。罗恩头脑早熟,16 岁时凭借古典文学奖学金进入多伦多大学,在那里他学习荣誉科学(1948 年获得副州长奖章)。这让他进入了胰岛素共同发现者查尔斯·贝斯特博士的实验室。贝斯特博士和罗恩的母亲建议他学习医学,他在那里获得了 1950 年的病理学萨丁顿奖章和 1952 年的科迪银奖。罗恩在 E. Harry Botterell 博士的指导下学习神经外科和神经生理学,并在美国和欧洲担任博士后麦克劳克林旅行研究员(1959-1961 年)。罗恩是一位受过传统训练的科学家,擅长早期现代医学的模拟方法。他通过在手术室中采用数字技术和仪器,并将自己在神经生理学和立体定向神经外科方面的训练融合在一起,开创了临床神经生理学。罗恩于 1961 年加入多伦多总医院 (TGH) 的神经外科部门,并被授予马克尔学者 (1961-1966)。他走遍世界各地培训立体定向和功能性神经外科领域的神经外科医生,后来于 1979 年至 1988 年成为 TGH 的神经外科主任。罗恩在多伦多大学医学院任教 40 多年,于 1978 年成为正教授,并于 2005 年被授予名誉教授 - 神经外科头衔,同时还获得加拿大勋章。 1993 年,Ron 荣获世界立体定向和功能性神经外科学会 (WSSFN) 的 Spiegel & Wycis 奖章。1999 年,多伦多大学外科学系设立了 RR Tasker 功能性神经外科讲席教授席位,以表彰他在这一医学领域的诸多贡献。Ron 在临床研究领域享誉全球,是一位出色的外科医生、教师、导师和职业榜样,他思路清晰、说话直白,备受推崇。Ron 的职业诚实正直令人无可争辩,他是一位温和、有礼貌、平易近人的老师。作为一名父亲,Ron 在树林里最为放松。他身后留下了孩子 Moira、James(Sandra Poole)、Ronald(Bonnie Crook)和 Alison,四个孙辈,妹妹 Elizabeth White(娘家姓 Tasker)和嫂子 Sheila Waengler(娘家姓 Craig)。
3 乌兹别克斯坦塔什干国立研究大学 TIIAME 电力供应和可再生能源系 4 安集延农业与农业技术研究所,乌兹别克斯坦安集延 摘要。本文分析了使用太阳能光伏和水力发电组合装置的前景,并介绍了它们的特性和能量参数。特别是,由于水力发电装置由反向转子液压装置组成,因此研究了反应叶轮和主动叶轮的动态参数与液压装置效率之间的函数关系。基于获得的图表和解析表达式,分析了喷嘴液压涡轮的能量参数与液压装置设计参数之间的关系。 1. 简介 众所周知,地球上地下燃料资源的分布不均和限制损害了各国对燃料的经济依赖。全球范围内对热能和电力的需求不断增长,导致地下燃料的价格上涨。这种情况要求在所有领域合理使用可再生能源。半导体光伏的发展以新的应用科学研究领域为特征。半导体光电转换器 (FP) 分为三代:第一代 FP;第二代 FP 和第三代 FP。第二代和第三代 AF 的开发正在积极开展。数字建模方法的出现和深入发展使研究质量显著提高。全面实施经典和量子固体物理理论的可能性,大量实验数据信息库的形成使开展更高质量、更深入和更有成效的科学研究成为可能。在这方面,可以注意到以下在基础科学和应用方面最重要的方向。首先,值得特别注意的是,可以在第一代 FP 的基础上创建多边照明元件 [1]。在这个方向上进行的理论和实验研究表明,创建具有垂直 pn 结的矩阵 FP 具有良好的前景。这种 PC 在产生高输出电压和转换集中太阳辐射的任务中具有无可争辩的优势。此外,在多边敏感设计中实现这种 FP 可以将半导体硅的消耗量减少三到四倍。其次,人们非常感兴趣的是与 FP 在干燥、炎热、大陆性和多尘气候中的运行相关的科学和应用研究,例如在中亚共和国。因此,制造适应大陆气候变化的太阳能光伏装置的任务仍然重要。在这方面,开发和实施 3D 格式的太阳能光伏电站很有前景,其中首次排除了使用平板 [2]。应该指出的是,这种发电厂在转换集中的太阳辐射方面具有竞争力。可再生能源初级潜力的自然不稳定性在全世界仍然是一个未解决的问题。因此,为了从可再生能源中获得持续的能源,正在积极开展应用研究,以创建混合发电厂:“太阳能-风能”[3]、“太阳能-光伏”、“太阳能-光伏-热能”、“太阳能-水力”[4]、“风力-水力”和“太阳能-风力-水力”。基于这项研究的结果,开发的太阳能装置的成本将降低,其经济效率将提高。然而,在小体积中积累大量的太阳辐射会导致
由严重急性呼吸综合征冠状病毒 2 (SARS-CoV-2) 引起的 2019 年冠状病毒病 (COVID-19) 全球大流行给个人和社会带来了巨大的社会和经济成本。对于疫苗研究而言,COVID-19 大流行是科学上令人兴奋的时期,合作成果令人瞩目,被称为医学界的登月,并强调疫苗对全球公共卫生保健的重要性。疫苗有助于减少死亡和重症,这是无可争辩的。大流行为测试和比较不同的 COVID-19 疫苗平台 (Frederiksen 等人,2020 年) 提供了一个独特的机会,这些疫苗平台的开发和批准速度空前。尽管 COVID-19 大流行尚未结束,但我们正在超越紧急响应,适应与病毒共存,同时正在制定应对 SARS-CoV-2 持久威胁的策略。现在是时候反思我们从 COVID-19 疫苗推广中学到的东西,以及疫苗接种领域必须解决的重大挑战。下面介绍了一些最重要的挑战。在开发 COVID-19 疫苗的竞赛中,mRNA 疫苗成为领跑者(Pardi 等人,2018 年;Wadhwa 等人,2020 年;Dolgin,2021 年)。两种不同的 mRNA 疫苗,即 Comirnaty ®(辉瑞/BioNTech,美国纽约市)和 Spikevax ®(Moderna,美国马萨诸塞州剑桥),被证明具有高度安全性和有效性(Polack 等人,2020 年;El Sahly 等人,2021 年),并且在 SARS-CoV-2 完整基因组测序后不到 1 年就获得了大规模疫苗接种的紧急批准(Zhou 等人,2020 年;Zhu 等人,2020 年)。这一前所未有的快速开发时间可归因于:1) 政府、制造商和监管机构之间非常有效的合作,2) 这种疫苗类型相对于传统疫苗平台的独特优势(Hogan 和 Pardi,2022 年)。生物信息学用于快速设计抗原编码的mRNA,对于COVID-19疫苗,该设计基于SARS-CoV-2基因组序列(Zhou等人,2020年;Zhu等人,2020年)和先前针对中东呼吸综合征冠状病毒的疫苗开发经验(Pallesen等人,2017年)。COVID-19 mRNA疫苗含有核苷修饰的mRNA,该mRNA编码融合前稳定的SARS-CoV-2刺突(S)蛋白,封装在脂质纳米颗粒(LNP)中。LPN保护mRNA免于降解并将其运送到细胞胞质溶胶,在那里原位翻译成蛋白质抗原,随后诱导保护性免疫反应。LNP设计基于为药物Onpattro®(Alnylam®Pharmaceuticals,美国马萨诸塞州剑桥)中使用的短干扰RNA的全身性肝脏靶向而开发的LNP技术,该药物于 2018 年获批用于治疗由遗传性转甲状腺素蛋白淀粉样变性引起的多发性神经病(Adams 等人,2018 年;Akinc 等人,2019 年)。迄今为止,已接种了超过 10 亿剂 COVID-19 mRNA 疫苗,并且 mRNA 疫苗平台已被证实具有高效、安全、开发速度快和用途广泛的特点,因为当出现新的病毒变体时,它很容易用新抗原进行升级(Chaudhary 等人,2021 年),并且可以迅速扩大规模进行大规模生产。这