众所周知,由于磁性元件缺乏可集成性,因此在设计集成电路时应避免使用磁性元件。磁性元件制造领域的新发展是使用单片制造技术(而不是当今的批量方法)集成和小型化的有前途的器件。这种发展的驱动力在于某些受益于或依赖于使用铁磁介质的电感或磁耦合器件的应用。此类应用的示例包括调谐射频谐振器、匹配网络、直流-直流功率转换和调节、网络滤波器和线路隔离器/耦合器。新兴应用需要更高的移动性、更低的功耗以及更小的元件和系统尺寸,这已成为高度集成系统和/或子系统发展的驱动力。为了顺应这些趋势,必须能够将高质量的磁性器件(即电感器和变压器)与其运行的系统集成在一起,而不是作为独立的分立器件。它们的离散特性不仅阻碍了进一步小型化,而且其特性也阻碍了性能(例如速度)的提高。单片磁性设备的主要特点包括:
无源元件、电路和子系统 E01 平面无源元件和电路 E02 平面滤波器和多路复用器 E03 非平面无源元件和电路 E04 非平面滤波器和多路复用器 E05 智能材料、RF MEMS、MOEMS 和 NEMS E06 超材料、可重构表面(包括频率、极化、传播)和电磁带隙结构 E07 互连和封装 - 从微波到 THz 电路 E08 增材制造、新兴材料(包括环保、生物来源)和可持续技术 有源元件、电路和子系统 E09 低噪声电路和模块 E10 频率生成、转换和控制 E11 前端和收发器模块、系统级封装技术 E12 功率放大器,包括效率增强、线性化和行为建模 E13 亚太赫兹和太赫兹元件、电路和系统E14 微波光子元件、电路与系统
180 度混合耦合器设计为在 5 至 10 GHz 频率范围内小型化,求和端口相移为 0 度,差分端口相移为 180 度。小型化可以最大限度地降低功耗,而无源元件可以解决微带线基板材料复杂的可达性问题!将在 Cadence 中选择和设计电感器的金属层,并确定金属的磁导率和介电常数。设计过程从先进设计系统 (ADS) 中的环形混合耦合器微带线开始,到集总无源元件,再到 Cadence 中的有源 65nm CMOS 实现。仿真结果显示,通过中心抽头电感的材料在 EMX 仿真后产生了寄生电感,使感兴趣的频率带宽向左移动 1GHz。无源电路的正向增益为-10dB,回波损耗约为-6dB。已进行文献研究以缩小混合耦合器的体积并分析其性能参数。最终结果表明,仅使用了四个无源元件,覆盖了感兴趣的频带5GHz。
Exxelia 是一家复杂无源元件和精密子系统制造商,专注于高要求的终端市场、应用和功能。Exxelia 产品组合包括各种电容器、电感器、变压器、电阻器、滤波器、位置传感器、滑环和高精度机械零件,服务于航空航天、国防、医疗、铁路、能源和电信等众多领先的工业领域。
1. 射频和微波元件(无源元件)的设计和开发 2. 用于 PCB 制造的 UV 辅助 3D 打印系统的开发 3. 基于 NavIC 的资产跟踪系统的开发 4. 基于 FPGA 的基带接收器高速 CCSDS 处理器 5. 提高散热片内热底板的传导传热效率
通过提出一个新模型,可以计算出器件电流均方根和平均电流以及电感/变压器电流均方根和峰值的方程,从而提高双向双有源桥 (DAB) 直流-直流转换器的效率。这些方程有助于预测器件和无源元件中的损耗,并有助于转换器设计。在考虑缓冲电容器对 DAB 转换器的影响的同时,还分析了降压和升压模式下的零电压开关 (ZVS) 边界。所提出的模型可用于预测任何所需工作点的转换器效率。新模型可作为 DAB 硬件设计(器件和无源元件选择)、软开关工作范围估计和设计阶段性能预测的重要教学兼研究工具。DAB 直流-直流转换器的运行已通过大量模拟验证。基于所提出的模型设计了一个 DAB 转换器原型,并用于航空航天储能应用。实验结果验证了新模型在 7 kW、390/180 V、20 kHz 转换器运行和 ZVS 边界运行中的有效性。
Exxelia 是一家复杂无源元件和精密子系统制造商,专注于高要求的终端市场、应用和功能。Exxelia 产品组合包括各种电容器、电感器、变压器、电阻器、滤波器、位置传感器、滑环和高精度机械零件,服务于航空航天、国防、医疗、铁路、能源和电信等众多领先的工业领域。