专门为猫与狗数据集和与铁路相关的数据集。目标是解决公共和专业领域中复杂背景和多角度摄影所带来的挑战。剪辑 - 取回剪辑模型的图像编码器作为其核心体系结构,提取图像特征,并构建一个相似性矩阵,以与不同图像之间的相似性分数。基于排序的结果,它显示最相关的图像。为了验证剪辑 - 恢复的鲁棒性和稳定性,我们进行了比较研究和干扰抗性实验。实验结果显示出显着的进度改进,表明了出色的图像检索效果。具体来说,剪辑回程有效地处理复杂的背景和构成不同数据集的变化,从而提供准确有效的检索服务。
● 随着区块链交易数量的增长,所需的存储空间和网络带宽也随之增长。● 迄今为止,DAG 项目包含一些中心化特性,例如中央协调器、预选验证器或“见证”节点,或完全私有的网络系统。迄今为止,它们还无法维持“纯粹的去中心化”。
如何建立因果关系的研究在许多学科中引起了越来越多的关注 [1、2、3、4、5、6],尤其是在无法进行随机对照实验的情况下。有向无环图 (DAG) [1、2、5] 是可视化假设的因果关系、确定可能出现偏差的位置以及告知如何解决偏差的关键工具之一。这些图显示了暴露、结果和其他相关变量之间的联系。DAG 被广泛应用于流行病学 [7、8、9]、社会学 [10、11、12]、教育学 [13、14、15] 和经济学 [16、17、18]。 DAG 由节点和边组成,节点表示变量,边通过显示从原因指向结果的箭头来传达直接的因果关系。重要的是,如果一个图没有变量是其自身的祖先,即图中没有循环,并且每条边都指向一个方向,则该图符合 DAG 的条件 [19]。要使 DAG 被视为因果关系,它需要包含图中任何两个现有变量的共同原因的所有变量 [1]。
在移动设备上处理视觉数据有许多应用,例如应急响应和跟踪。最先进的计算机视觉技术依赖于大型深度神经网络 (DNN),而这些网络通常耗电量太大,无法部署在资源受限的边缘设备上。许多技术通过牺牲准确性来提高 DNN 的效率。然而,这些技术的准确性和效率无法适应具有不同硬件约束和准确性要求的各种边缘应用。本文表明,一种称为分层 DNN 的最新高效树型 DNN 架构可以转换为基于有向无环图 (DAG) 的架构,以提供可调的准确性-效率权衡选项。我们提出了一种系统方法来识别必须添加的连接以将树转换为 DAG 来提高准确性。我们在流行的边缘设备上进行了实验,并表明增加 DAG 的连接性可以将准确性提高到现有高精度技术的 1% 以内。我们的方法比高精度技术所需的内存减少了 93%,能耗减少了 43%,操作减少了 49%,从而提供了更高的精度和效率。
连。这些关系可以是“is_a”或“part_of”,形成了一个有向无环图(DAG)的结构。 GO注释是将基因产 物与GO术语相关联的过程,这对于理解基因的功能和进行基因表达分析至关重要。 GO注释的结果可 以用于多种分析,包括基因本体论富集分析,这是一种统计方法,用于确定在一组基因中哪些GO术 语的出现频率显着高于随机预期,从而揭示基因集的生物学功能。
在本文中,我们提出了一种针对定向无环图(DAG)的新假设测试方法。虽然有大量的DAG估计方法,但DAG推理解决方案的相对匮乏。此外,现有方法通常施加一些特定的模型结构,例如线性模型或加性模型,并假设独立的数据观察结果。我们提出的测试允许随机变量之间的关联是非线性的,并且数据与时间有关。我们基于一些高度灵活的神经网络学习者进行测试。我们建立了测试中的渐近保证,同时允许每个受试者的受试者数量或时间点差异到无穷大。我们通过模拟和大脑连接网络分析来证明测试的功效。
摘要 - 随着用户应用程序服务需求的进步,IoT系统倾向于将任务运送到边缘服务器以进行执行。当前关于流量边缘计算的大多数研究都忽略了应用程序综合之间的依赖关系。主要用于单用户场景中,主要用于应用拓扑拓扑的边缘计算的少数研究。与以前的工作不同,我们的工作主要解决了在多源场景中使用边缘计算弹出的依赖任务,这更符合现实。在本文中,将流量问题的依赖任务建模为马尔可夫决策过程(MDP)第一。然后,我们通过共同考虑,通过共同考虑几个用户之间的应用拓扑,并共同考虑了一个基于有向的无环图(DAG)的嵌入层的参与者 - 批评机制。最后,模拟的结果还显示了所提出的Aced算法的优先级。
图 1 : AI 带来 OA 功能的重构 ......................................................................................... 3 图 2 :微软发布 Copilot .................................................................................................. 3 图 3 :百度“如流” ........................................................................................................ 3 图 4 : Copilot 根据要求起草邮件 .................................................................................... 4 图 5 : Copilot 提炼邮件内容 ........................................................................................... 4 图 6 : Copilot 对会议内容进行总结并支持提问 .............................................................. 5 图 7 : Copilot 支持会议内容的实时总结和提问 .............................................................. 5 图 8 : Copilot 对客户关注的领域进行扫描 ..................................................................... 5 图 9 : Copilot 根据销售资料提供竞品分析建议 .............................................................. 5 图 10 : Copilot 整理各类资料协作对工作内容进行梳理 ................................................. 6 图 11 : Copilot 为接下来的会议准备相关资料 ................................................................ 6 图 12 :泛微智能办公平台框架图 .................................................................................... 7 图 13 :泛微智能办公平台前端技术 ................................................................................ 7 图 14 :泛微小 e 助手查询业绩 ....................................................................................... 7 图 15 :泛微小 e 助手智能填单 ....................................................................................... 7 图 16 :小致语音助手技术框架 ........................................................................................ 8 图 17 :小致语音助手使用示例 ........................................................................................ 8
环印度洋联盟的愿景源于已故南非共和国总统纳尔逊·曼德拉 1995 年访问印度时提出的,强调了印度洋沿岸国家之间经济合作的重要性。当时他说:“历史和地理事实的自然冲动......应该扩大到包括环印度洋地区的概念,以促进社会经济合作和其他和平努力。”国际体系的最新变化要求印度洋沿岸各国成为单一平台。”这种观点和理念促成了1995年3月印度洋沿岸地区倡议(IORI)的提出,以及1997年3月印度洋沿岸地区合作联盟(IOR-ARC)的成立,当时的联盟名为IORA。如今,IORA是最高级别的地区组织,拥有23个成员国和12个对话伙伴,西起南非,延伸至非洲东海岸,沿着海湾延伸至南亚和东南亚,东至澳大利亚。今年(2024年)将是该联盟成立27周年。