摘要:氮化钛(Ti-n)薄膜是电导和导导的,具有高硬度和耐腐蚀性。致密和无缺陷的Ti-N薄膜已被广泛用于切割工具,耐磨性组件,医疗植入装置和微电子的表面修饰。在这项研究中,通过高功率脉冲磁控溅射(HPPM)沉积了Ti-N薄膜,并分析了其血浆特性。通过调节底物偏置电压以及其对微结构,残留应力和薄膜的粘附的影响来改变Ti物种的离子能量。结果表明,在引入氮气后,在Ti靶标表面形成了Ti-N化合物层,从而导致Ti目标放电峰功率增加。此外,Ti物种的总频量减少,Ti离子的比率增加。HPPM沉积的Ti-N薄膜密集且无缺陷。当Ti-ions的能量增加时,Ti-nfim的晶粒尺寸和表面粗糙度减少,残留应力增加,Ti-N Thin Fimflm的粘附强度降低。
法律免责声明:本指南仅供参考,不构成法律建议。本指南不能替代任何适用法律、法规、规章、关税和/或规范。此外,任何信息如有更改,恕不另行通知。如果本指南与任何适用法律、法规、规章、关税和/或规范有任何冲突,则以适用法律、法规、规章、关税和/或规范为准。纽约联合爱迪生公司对因本指南或与本指南相关而产生的任何间接、特殊、附带、惩罚性或后果性损害(包括利润损失)概不负责。公司审查:公司应在设计的各个阶段以及施工期间审查客户的设计。公司的审查仅针对总体安排和是否符合公司的互连要求,并不表明设计安全或无缺陷。公司对最终计划或图纸的审查表明该设计与公司设备和服务兼容。客户应全权负责正确设计、操作、维护和确保客户安装的安全。此外,所有工作和设备必须符合市政法规和所有其他适用的规范和要求,包括施工时有效的国家电气规范 (NEC)、国家电气安全规范 (NESC) 和 OSHA 的适用规定。
我们报告了实现大规模量子加工体系结构的实现,该体系结构超过了1000个原子码头的层。通过铺平多个微烯类生成的镊子阵列,每个阵列由独立的激光源操作,我们可以消除可分配量子数量的激光功率限制。已经有两个单独的数组,我们实现了合并的2D配置,平均数为1167(46)单原子量子系统。以高效率实现两个阵列之间的原子的传递。因此,用二次阵列的原子指定为量子处理单元的一个阵列显着增加了量子数的数量和初始填充分数。这种大幅度扩大了可达到的量子簇的大小和成功概率,使我们能够证明无缺陷组装的簇组装高达441吨的簇,并在几十个检测周期内持续稳定,并在近乎统一的填充下持续稳定。提出的方法通过促进高度可扩展的量子寄存器的可构型几何形状来证实中性原子量子信息科学科学,并立即应用于Rydberg-State介导的量子模拟,易受断层通用量子计算,量子传感和量子元学。
摘要:鉴于改进结构装配方法的必要性日益增加,尤其是在航空工业中;通过比较当前使用的方法进行适当的研究,有助于选择正确的方法来实现制造目标。它还可以激发进一步的研究,以解决该领域的现有缺陷或提高现有方法的效率。出于上述动机,本文对压痕方法进行了仔细研究。本文将通过对不同性质的板材的实验结果来修订热压痕和冷压痕的主要特性。进行了拉伸试验和剪切试验,以评估每种压痕方法后的板材强度,并研究在进行实验时发现的各种故障。评估了压痕的状态、疲劳,尤其是径向裂纹和孔径。我们希望实现允许铆钉与周围材料表面齐平的压痕,并且铆钉头可以无缺陷地安装。由于航空航天飞行器、导弹系统和相关设备的制造和组装越来越复杂,本研究旨在为压花工艺提供启示;尤其是公羊币压花。公羊币压花方法分为冷压花(室温)和热压花(高温)。将本研究论文与之前的研究进行比较,
对表面上的冰和石灰尺度晶体的不必要积聚是对重大经济和可持续性的长期挑战。被动抑制液体液体表面的糖霜和缩放通常不足,在恶劣条件下容易受到表面衰竭的影响,并且不适合长期/现实生活中的使用情况。这样的表面通常需要多种功能,例如光学透明度,可靠的冲击电阻以及防止低表面能液体污染的能力。不幸的是,最有前途的进步依赖于使用生物持久性和/或剧毒的每种氟化化合物。在这里表明有机,网状介孔结构,共价有机框架(COF)可能是溶液。通过利用无缺陷COF的简单且可扩展的合成和合理的合成后功能化,制备了精确的纳米齿状(形态学)的纳米涂层,可以抑制分子水平的成核而不会损害相关污染的预防和鲁棒性。结果是一种简单的策略,以利用纳米配置效应,这显着延迟了表面上冰和尺度形成的成核。冰核被抑制至-28°C,在过饱和条件下避免了尺度的形成> 2周,并且在韦伯数字上影响的有机溶剂的射流> 10 5也被抗光透明度(> 92%)的表面抵抗。
本文对在独立衬底上生长的 GaN 外延层上的 Ni 肖特基势垒进行了表征。首先,通过对裸材料进行透射电子显微镜 (TEM) 图像和导电原子力显微镜 (C-AFM) 的纳米级电学分析,可以看到晶体中的结构缺陷以及电流传导的局部不均匀性。在外延层上制造的 Ni/GaN 垂直肖特基二极管的正向电流-电压 (IV) 特性给出的肖特基势垒高度平均值为 0.79 eV,理想因子为 1.14。对一组二极管的统计分析,结合温度依赖性测量,证实了在该材料中形成了非均质肖特基势垒。从 Φ B 与 n 的关系图中可以估算出接近 0.9 eV 的理想均质势垒,与通过电容-电压 (C – V) 分析推断出的势垒相似。通过 C-AFM 获得的局部 IV 曲线显示了电流传导开始点的不均匀分布,这又类似于在宏观肖特基二极管中观察到的电流传导开始点。最后,在不同温度下获得了在无缺陷区域制造的二极管的反向特性,并通过热电子场发射 (TFE) 模型描述了其行为。
由于焊接电流会影响电极烧尽速度、熔合深度和焊件几何形状,因此它是电弧焊工艺中最重要的变量。焊道形状、焊接速度和焊接效率都受电流影响。由于直流电极负极 (DCEN)(正极性)产生更好的效果,因此电极正极 (DCEP) 上的焊接穿透深度和行进速度更大,并且它用于大多数 GTAW 焊接(反极性)。反极性允许电极尖端快速升温并在气体钨中降解。因为阳极比阴极升温更快。气体钨电弧焊中的较高电流会导致飞溅和工件损坏。同样,在气体钨电弧焊中,较低的电流设置会导致填充焊丝粘住。为了沉积等量的填充物,必须长时间施加高温。因此,对于较低的焊接电流,通常会看到更大的热影响区域。在固定电流模式下调整电压以保持电弧电流稳定 [3,4]。与其他焊接工艺相比,我们通常通过钨极惰性气体焊接实现无缺陷接头。让您更好地控制焊接,从而实现更快、更高质量的焊接。另一方面,GTAW 比大多数其他焊接方法复杂得多,难以跟踪,而且速度要慢得多。填充金属通常被使用,但是一些焊接(称为自熔焊或组合焊)不需要它。这种方法提供了竞争方法,例如焊接技术包括屏蔽金属电弧焊和气体金属电弧焊。
沼气是可再生能源,具有减少全球对化石燃料的全球依赖性的巨大潜力。沼气用作车辆燃料或天然气替代品需要将主沼气组件分离,即甲烷和二氧化碳。这种沼气Sep Aration对于使二氧化碳的价值是必要的,二氧化碳是二氧化碳的,这是在dustries,化学合成和温室中的食品和饮料中的宝贵分子,以及其他工业活动。尽管大多数专注于沼气分离的生物学技术仍处于开发阶段,但由于其效率,紧凑的设计,经济可行性和易于可伸缩性,在过去十年中,在过去的十年中,将膜的使用呈指数增长。本文提供了膜技术现状的全面概述,重点介绍了沼气净化和升级膜系统的基本原理和最新进步。基于6FDA的聚合物和内在微孔度的聚合物为推进沼气升级中使用的膜技术提供了有希望的前景。将填充剂(例如沸石和金属有机框架)掺入聚合物基质中,以产生混合基质膜(MMM)显着提高了整体性能(CO 2渗透率高达18,000 Barrer and CO 2 /CO 2 /CH 4选择性值最高为85)和膜的功能。然而,MMM的主要挑战仍然存在于具有高CO 2 /CH 4选择性并确保长期稳定性的Fabri套管无缺陷膜中。
摘要 线材和电弧增材制造 (WAAM) 是一种增材制造 (AM) 工艺,可以生产大型金属部件,材料浪费少,生产率高。然而,WAAM 的高沉积率需要高热量输入,这可能导致孔隙、裂纹、未熔合或变形等潜在缺陷。为了在工业环境中实际实施 WAAM 工艺,必须确保无缺陷生产。然而,使用传统 NDT 技术(例如超声波、涡流、X 射线)进行 NDT 检测是一项非常艰巨的任务,尤其是在零件生产过程中。因此,需要可靠的在线 NDT 检测和监测技术来推广 WAAM 的工业应用。这项工作的目的是使用频率带宽为 10 至 1MHz 的现场采集声学数据来检测 WAAM 生产零件上的缺陷形成。WAAM 零件经过故意引入污染物的处理,同时获取其声学信号以将不同的信号特征与缺陷关联起来。为了识别缺陷形成,使用了两种不同类型的麦克风从同一沉积过程中获取数据。信号处理包括应用时域和频域技术,即功率谱密度和短时傅立叶变换。获得的声学特征可以区分有缺陷和无缺陷的信号,并确定污染物的空间位置。获取的声学信号还表明,传统麦克风获取的数据不足以完全表征 WAAM 工艺发出的声谱。这项工作展示了声学数据和信号处理在 WAAM 生产部件的在线检查中的潜力。关键词:WAAM、声学、傅里叶变换、光学麦克风、STFT
摘要:热锻模具受到周期性热应力作用,经常以热疲劳、磨损、塑性变形和断裂的形式失效。为延长热锻模具的使用寿命并降低总生产成本,提出了一种热锻模具梯度多材料线材电弧增材再制造方法。多材料梯度界面的性能对决定最终产品的整体性能起着至关重要的作用。本研究将热锻模具再制造区分为过渡层、中间层和强化层三个沉积层。在5CrNiMo热锻模具钢上进行了梯度材料线材电弧增材制造实验,对梯度界面的微观组织、显微硬度、结合强度和冲击性能进行了表征和分析。结果表明,梯度添加剂层及其界面无缺陷,梯度界面获得了高强度的冶金结合。梯度添加剂层的组织从底层到顶层呈现贝氏体到马氏体的梯度转变过程。显微硬度从基体层到表面强化层逐渐增加,在100 HV范围内形成三级梯度变化,3个界面的冲击韧性值分别为46.15 J/cm 2 、54.96 J/cm 2 、22.53 J/cm 2 ,冲击断口形貌从延性断裂到准解理断裂,梯度界面力学性能表现为硬度和强度梯度增加,韧性梯度降低。采用该方法再制造的热锻模具实际应用,平均寿命提高了37.5%,为热锻模具梯度多材料丝电弧增材再制造的工程应用提供了科学支撑。