起搏器旨在用作心脏内在的起搏系统的替代,以纠正心律疾病。常规的起搏器由2个组件组成:脉冲发生器和电极(或引线)。起搏器被认为是维持生命的,维持生命的III类设备,适用于各种心律失常的人。尽管常规起搏器的功效和安全性非常出色,但在一小部分人中,它们也可能导致铅并发症以及对手术口袋的需求。此外,由于缺乏静脉通路和经常性感染,有些人在医学上不符合常规起搏器的资格。无铅的起搏器是单个单元设备,通过股骨通道植入心脏,从而消除了由于铅和手术口袋而导致并发症的可能性。MICRA和AVEIR单室经导管起搏系统以及Aveir双室起搏系统是美国食品药品监督管理局批准的美国唯一可商购的无铅起搏器。
•商业(对照)的最后一年结果必须<8%,商业和医疗保险(不良对照)必须≤9%,以显示糖尿病控制的证据。HBA1C结果应为数字,并包括结果日期。•GMI使用患者连续葡萄糖监测仪(CGM)的估计平均葡萄糖(EAG)进行了记录,以计算A1C值。EMR将EAG转换为HBA1C值,或者可以使用美国糖尿病协会计算器转换提供商。必须包括用于得出EAG值的CGM日期范围的文档。对糖尿病患者(EED)患者的眼科检查:视网膜护理专业人员必须针对视网膜病阳性的患者进行视网膜或扩张性检查,每两年,对于没有视网膜病变的患者,或者在患者病史期间随时随地进行双侧眼睛核酸次检查所需的检查。
A.在存在房颤的情况下,个体具有高级房室(AV)区块(请参阅政策指南)或具有明显的心动过缓,并且:1。正常的窦性节奏,罕见发作为2°或3°AV阻滞或鼻窦停滞(请参阅政策指南)2。慢性心房颤动3。严重的身体残疾(请参阅政策指南)B。个体具有明显的禁忌症,排除了常规的单室心室起搏器的铅,例如以下任何一个:1。血管内或心血管植入电子设备(CIED)感染或感染高风险的历史(请参阅政策指南)2。有限的静脉起搏的访问有限的静脉异常,腋静脉的阻塞或计划在半永久性导管或电流或计划使用动静脉瘘进行血液透析3的情况下使用。存在生物假体三尖瓣
电子元件的可靠性一直是工程师面临的挑战。本研究解决了了解随机振动对无铅焊料作为电子元件内热界面材料 (TIM) 的可靠性的影响这一关键需求。ANSYS 软件用于设计、开发和模拟电子模型,重点关注 TIM。SAC405 无铅焊料用作 TIM,其厚度在 0.01 到 0.06 毫米之间变化(间隔为 0.01 毫米)。本研究的结果揭示了相关的相关性。随着 TIM 厚度的增加,应力和应变明显减少,而变形增加。值得注意的是,TIM 厚度和疲劳寿命之间存在直接关系;较厚的 TIM 与增加的疲劳寿命相关。此外,当 TIM 厚度为 0.01 毫米时,公式 1、2 和 3 的疲劳寿命测量值分别为 2.76 x 104、1.63 x 104 和 0.792 x 104。这些发现对工程师具有深远的影响,如果使用无铅焊料作为 TIM,它们将作为指导框架,帮助选择电子元件的最佳 TIM 厚度。了解应力、应变、变形和疲劳寿命之间的权衡至关重要,使工程师能够在电子系统设计和开发过程中做出明智的决策,最终提高整体可靠性。本研究建议在电子应用中使用无铅焊料作为 TIM,因为它具有热和可靠性方面的优势。
EGLE 在其任何计划或活动的管理中不会因种族、性别、宗教、年龄、国籍、肤色、婚姻状况、残疾、政治信仰、身高、体重、基因信息或性取向而歧视任何人,并禁止恐吓和报复,这是适用法律和法规的要求。如有疑问或疑虑,请联系非歧视合规协调员,邮箱地址为 EGLE-NondiscriminationCC@Michigan.gov,电话为 517-249-0906。本表格及其内容受《信息自由法》约束,可能会向公众发布。
光伏技术的进步肯定是由铅基钙钛矿太阳能电池(PSC)改造的。但铅毒性是其大规模商业生产和使用的巨大障碍。因此,在目前的工作中,已经对三种无铅钙钛矿材料Masni 3,Masnbr 3和Magei 3进行了彻底研究,以开发高效率和稳定性的环境友好PSC。建模的设备结构用ZnO用作电子传输层(ETL),CH 3 NH 3 SNI 3,CH 3 NH 3 NH 3 SNBR 3和CH 3 NH 3 GEI 3作为钙钛矿的吸收层(PAL),螺旋形成孔作为孔传输层(HTL),Indium掺杂锡氧化物(HTL),Indium oped Tin oxide(Ito)(ITO)(ITO)和顶部的Electode and Anode Anode Anode Anode Anode Anode Anode Anode。缺陷密度与钙钛矿吸收层的不同厚度相结合,以获得最佳的太阳能电池参数。At a thickness of 500 nm and defect density of 1 × 10 14 cm −3 of PAL, simulated Perovskite solar cell ITO/ZnO/CH 3 NH 3 SnI 3 /Spiro- OMeTAD/Au provided optimized solar cell parameters as PCE 25.95%, Voc 1.06V, Jsc 31.67mA/cm 2 and FF 77.24%, ITO/ ZnO/CH 3 NH 3 SnBr 3 /Spiro-OMeTAD/Au provided PCE 25.01%, V OC 1.02V, J SC 32.41 mA/cm 2 and FF 75.68%, ITO/ZnO/CH 3 NH 3 SnI 3 /Spiro-OMeTAD/Au provided PCE 19.66%, V OC 1.81V, J SC 14.29 mA/cm 2 and FF 75.95%.此外,对太阳能电池特征研究了界面缺陷密度,串联电阻,分流电阻和温度的影响。可以很好地观察到,基于SN的设备比基于GE的设备更有效,更稳定,反之亦然。
摘要:钙钛矿太阳能电池(PSC)由于性能的迅速提高而在科学界引起了极大的关注。无机钙钛矿设备的高性能和长期稳定性已被备受关注。这项研究介绍了通过建模使用无铅N - I-i-p甲基苯丁基溴化物(MASNBR 3)材料产生高效PSC的设备优化过程。我们已经彻底研究了吸收器和界面层对优化结构的影响。我们的方法利用石墨烯作为孔传输和吸收层之间的界面层。我们使用氧化锌(ZnO)/Al和3c - SIC作为吸收剂和电子传输层之间的界面层。优化过程涉及调整吸收层和界面层的厚度并最小化缺陷密度。我们提出的优化设备结构,ZnO/3C - SIC/MASNBR 3/Chaphene/Cuo/Au,表明理论功率转换效率为31.97%,填充因子为89.38%,当前密度为32.54 mA/cm 2,电压为1.112 V,量子为1.112 V,量子为94%。这项研究强调了Masnbr 3作为一种无毒的钙钛矿材料,可从可再生来源的应用中提供可持续能源。
正在开发智能植入电子医疗设备,以提供更连接,个性化和精确的医疗保健。这些植入物中的许多依赖于压电陶瓷来感测,通信,能量自主性和生物刺激,但是具有压电系数最强的压电陶瓷几乎完全基于铅。在本文中,我们评估了无铅替代方案的机电和生物学特征,0.94Bi 0.5 Na 0.5 TIO 3 - 0.06BATIO 3(BNT-6BT)通过两种合成途径制造:常规固态方法(PIC700)和磁带铸造(TC-BNT-6BT-6BT)。BNT-6BT材料表现出柔软的压电特性,D 33压电系数不如常用的PZT(PIC700:116 PC/N; TC-BNT-6BT:121 PC/N; PZT-5A; PZT-5A:400 PC/N)。该材料可以可行,作为软PZT的无铅替代品,其中最高10 dB的中等性能损失是可以忍受的,例如压力感应和脉搏回声测量。没有检测到BNT-6BT的短期有害生物学作用,并且该材料有助于MC3T3-E1鼠前层细胞的增殖。bnt-6bt可能是电活性植入物和可植入电子产品的可行材料,而无需密封。
摘要 - 焊料疲劳故障是限制微电子流量芯片包装可靠性的主要磨损故障机制之一。焊料疲劳故障发生在裂缝启动并随后通过整个焊接接头传播,从而导致电气开放。焊接关节内的裂纹引发和支撑性是由压力的循环施加引起的,这通常是由于暴露于温度周期所引起的。了解产品使用过程中的热循环与用于测试的加速热循环之间的关系对于预测设备的可靠性至关重要。MIL-PRF-38535是用于综合电路(微电路)制造的指导航空航天和高可靠性的规格,该制造能够列出制造业,合格和认证要求,以在国防逻辑机构(DLA)的(DLA)合格列表(QM)(QML)列表中列出。该standard于2022年11月发布的修订版,首次包括在制造QML平流芯片产品中使用无铅焊合金和有机基质。 因此,对于无铅的平流芯片组件的焊料疲劳,人们非常需要了解实质性的物理(POF)。 本文删除了如何使用有限的元素建模来预测平流芯片包装组件的焊料疲劳。 作者的杠杆疲劳寿命是针对不同流量芯片雏菊链套件配置的,以及疲劳的生命定义并可以在发表的论文中使用。修订版,首次包括在制造QML平流芯片产品中使用无铅焊合金和有机基质。因此,对于无铅的平流芯片组件的焊料疲劳,人们非常需要了解实质性的物理(POF)。本文删除了如何使用有限的元素建模来预测平流芯片包装组件的焊料疲劳。作者的杠杆疲劳寿命是针对不同流量芯片雏菊链套件配置的,以及疲劳的生命定义并可以在发表的论文中使用。然后,作者使用所得的无铅焊料疲劳模型来进行参数研究,以研究不同的模具大小,填充材料属性和包装底物材料的影响。在共晶SN/PB和无铅疲劳寿命预测之间进行了比较。此外,作者还展示了如何将焊料疲劳预测用于使用条件,以便对平流芯片套件组件进行可靠性评估。这最终导致更好地理解焊料合金的影响以及材料选择对航空航天和高可靠性产品的任务生活的影响,这些产品属于MIL-PRF-38535修订中引入的更改M.
具有极快响应时间的爆炸能量转换材料在能源、医疗、国防和采矿领域有着广泛且日益增长的应用。对该领域潜在机制的研究和新候选材料的搜索非常有限,以至于环境不友好的 Pb(Zr,Ti)O 3 在半个世纪后仍然占主导地位。在这里,我们报告了一种以前未被发现的无铅 (Ag 0.935 K 0.065 )NbO 3 材料的发现,该材料具有创纪录的高能量存储密度 5.401 J/g,可在 1.8 微秒内实现约 22 A 的脉冲电流。它还表现出高达 150°C 的优异温度稳定性。各种现场实验和理论研究表明,这种爆炸能量转换的潜在机制可以归因于压力引起的八面体倾斜变化,从 a − a − c + 到 a − a − c − / a − a − c +,这与不可逆的压力驱动铁电-反铁电相变一致。这项工作为 Pb(Zr,Ti)O 3 提供了一种高性能替代品,也为进一步开发用于爆炸能量转换的新材料和设备提供了指导。
