基于物理的神经形态计算是当前数字技术的有前途的算法,因为其能量效率,并行性的潜力和较大的带宽。在各种体系结构中,复发性神经网络(RNN)特别适合以频度依赖性(例如音频和视频信号)处理数据[?]。但是,他们解决特定任务的监督培训通常是数据密集型的,需要调整网络的互发矩阵,这是硬件实现的挑战。储层计算(RC)提供了一个框架来通过简化训练过程来克服此问题,从本质上讲,将RNN未经训练以及在结合RNN节点的瞬时响应的输出层上使用简单的lin-1 eR-ear回归[??]。这些考虑因素通过使用七个技术平台(包括微电子学,旋转和光子学[??]。在后一类中,已经提出了各种插曲[? ]包括大规模的自由空间体系结构[???],光反馈体系结构[???]和光子集成电路[??]。这些物理系统已经在各种任务上证明了最先进的性能,包括非线性通道均衡,混乱的时间序列预测和语音识别[?]。],其中一个物理非线性反馈体系结构依赖于时间延迟储层(TDRC)方法[?
GünterNiemeyer博士是斯坦福大学机械工程助理教授,并指导远程植物学实验室。 他的研究研究了触觉,人类 - 动物相互作用,力敏感性和显示以及远程运行。 医疗设备,特别是伸缩手术,构成了主要应用。 他的工作还解决了时间延迟或网络传输对用户感知的影响,无论是在培训,模拟和操作中。 Niemeyer博士获得了硕士学位 和Ph.D.从自适应机器人控制和双边遥控区域的麻省理工学院,引入了波动变量的概念。 他还在MIT开发手术机器人技术的博士后研究职位。 1997年,他加入了直觉外科公司,在那里他帮助创建了Davinci微创手术系统。 该远程动物系统使外科医生能够使用沉浸式界面通过小型(5至10mm)切口执行复杂的程序,现在正在全球400多家医院使用。 他于2001年秋天加入了斯坦福大学。GünterNiemeyer博士是斯坦福大学机械工程助理教授,并指导远程植物学实验室。他的研究研究了触觉,人类 - 动物相互作用,力敏感性和显示以及远程运行。医疗设备,特别是伸缩手术,构成了主要应用。他的工作还解决了时间延迟或网络传输对用户感知的影响,无论是在培训,模拟和操作中。Niemeyer博士获得了硕士学位 和Ph.D.从自适应机器人控制和双边遥控区域的麻省理工学院,引入了波动变量的概念。 他还在MIT开发手术机器人技术的博士后研究职位。 1997年,他加入了直觉外科公司,在那里他帮助创建了Davinci微创手术系统。 该远程动物系统使外科医生能够使用沉浸式界面通过小型(5至10mm)切口执行复杂的程序,现在正在全球400多家医院使用。 他于2001年秋天加入了斯坦福大学。Niemeyer博士获得了硕士学位和Ph.D.从自适应机器人控制和双边遥控区域的麻省理工学院,引入了波动变量的概念。他还在MIT开发手术机器人技术的博士后研究职位。1997年,他加入了直觉外科公司,在那里他帮助创建了Davinci微创手术系统。该远程动物系统使外科医生能够使用沉浸式界面通过小型(5至10mm)切口执行复杂的程序,现在正在全球400多家医院使用。他于2001年秋天加入了斯坦福大学。
摘要 — 航空工业中使用的电子系统通常被概括为航空电子设备。大约七十年前,飞机上使用的第一批航空电子设备是基于旧仪表和模拟系统的导航和通信系统。从那时起,该行业已经发展了很多,今天的航空电子系统需要新的和更智能的功能,从而推动整个航空研究以指数级的速度向高级航空电子系统和架构发展。在本文中,对航空电子系统在不同发展阶段的成熟度进行了全面调查。在这个项目中,考虑了四个 LRU,每个 LRU 具有不同的输入参数和不同的采样时间。根据时间采样,数据阵列以串行方式发送,没有任何时间延迟。一旦数据数组作为输出发送出去,它就会进入由数据集中器和推理器组成的嵌入式系统。数据在这里收集,然后通过数据总线发送到微控制器,最后输出显示在 PC 上。Mathwork SIMULINK 可用于编码部分,算法由 Simulink 模块集实现。根据给予每个 LRU 的输入信号在示波器模块集上查看输出。将输出与所需输出进行比较。
摘要 人们普遍认为,脑脊液 (CSF) 运动是由脑内血管壁运动 (即血流动力学振荡) 促进的。最近,通过功能磁共振成像 (fMRI) 发现了非快速眼动 (NREM) 睡眠期间低频血流动力学振荡和 CSF 运动的连贯模式。这一发现提出了其他基本问题:1)从 fMRI 信号解释血流动力学振荡和 CSF 运动之间的耦合;2)清醒状态下是否存在耦合;3)CSF 运动的方向。在这项静息态 fMRI 研究中,我们提出了一个力学模型,通过 fMRI 的视角来解释血流动力学和 CSF 运动之间的耦合。计算了 CSF 运动和整体血流动力学之间的时间延迟。观察到的血流动力学和 CSF 运动之间的延迟与模型预测的延迟相符。此外,通过对大脑和颈部进行单独的 fMRI 扫描,我们证实了第四脑室的低频 CSF 运动是双向的。我们的研究结果还表明,即使个体处于清醒状态,脑脊液运动也主要受到低频范围内脑血容量变化的促进。
在过去的二十年中,液晶的应用呈爆炸式增长,因此有必要写一本涵盖这些不同用途的书。大约两年前,World Scientific 邀请我担任一本有关液晶应用的书的编辑,我萌生了写这本书的想法。我们计划将这本书分为两卷出版,第一卷涵盖液晶的基础知识和电光应用(第 1-19 章),第二卷专门介绍其他类型的应用(第 20-27 章)。但是,由于收到几章的时间延迟,因此增加了第三卷,主要用于这两卷中较晚到达的章节。由于原计划被推迟,我决定将我的章节分配到三卷中的每一卷,尤其是为了让第二卷和第三卷的篇幅更合适。本书的每一章都提供了由该领域的权威人士撰写的独立且最新的最新评论。第一卷包含13章关于液晶基础和电光应用的内容,于1990年7月出版。该卷在1990年7月23日至27日在加拿大温哥华举行的第13届国际液晶会议上展出,得到了液晶界的极大反响。
HGCDTE APD检测器模块电信是在CEA/LETI上开发的,用于大气刺激和自由空间光学(FSO)。开发是由可以在每个检测器模块中调整的通用子组件的设计和制造驱动的,以满足每个应用程序的特定检测器要求。从目前为大气激光雷达开发的探测器模块所设定的挑战详细介绍了此类子组件的优化,该挑战在AIRBUS的R&T CNES项目的范围内以及H2020 Project holdon的R&T项目范围以及FSO,以及在ESA项目的范围内与Mynaric Laserc的lasercom lasercom gmbhhs of airbus和FSO。最近已将两个检测器模块传递到空中客车DS进行广泛的LIDAR仿真测试。表明,与先前开发的大面积检测器相比,输入噪声,NEP = 10-15fw/√Hz(5个光子RMS)已减少了三分,尽管带宽已增加到180 MHz,以响应高空间深度分辨率的要求。在发现短光脉冲后200 ns时,时间延迟为10 -4,这与诸如测深分析之类的激光雷达应用兼容。
下一代半导体设备需要超低介电常数(ULK)材料,例如线结构后端的多孔SICOH,以使较低的电阻和电容(RC)时间延迟,但是,这些ULK材料在蚀刻过程中容易受到损坏。在这项研究中,纳米级牙线掩盖多孔的sicoH的蚀刻特征,例如蚀刻速率,蚀刻效果,表面损伤等。和等离子体特性,已使用双电频电容性耦合等离子体系统(DF-CCP)进行了研究,并通过使用用于低k介电蚀刻的常规C 4 F 8基于CC 4 F-CCP的气体进行了比较。结果表明,对于多孔SICOH的相似蚀刻速率和蚀刻率,与C 3 H 2 F 6的蚀刻相比,观察到较低的侧壁损伤。The analysis showed that it was related to less UV (less than 400 nm) emission and less fluorine radicals in the plasma for C 3 H 2 F 6 compared to C 4 F 8 , which leads to less fluorine diffusion to the sidewall surface of the etched porous SiCOH by the fluorine scavenging by hydrogen in C 3 H 2 F 6 .
本文提出了一种视觉集成导航系统,用于引导飞机在最终下滑道上滑行。该系统利用机载视觉系统跟踪跑道特征并估计飞机相对于着陆跑道的 6D 姿态。如果 ILS 或 GNSS/SBAS 传感器性能下降或出现故障,所提出的视觉集成导航系统将允许飞机继续执行最终进近程序,并保持导航精度。为了处理由于图像处理时间而导致的此类基于视觉的测量不可忽略的延迟,建立了一个包含时间延迟测量的误差状态卡尔曼滤波器 (ESKF) 框架。所提出的延迟测量 ESKF 框架利用了这样一个事实:摄像机图像采集由系统触发,因此可以无延迟地通知。这使得导航滤波器能够及时向前执行估计状态的反向传播,以便在测量可用时为未来的校正步骤做好准备。基于此框架的视觉集成导航系统已开发出来,并在模拟中验证了其功能。其估计性能将通过固定翼无人机实验平台上的两种不同视觉系统进行飞行评估。
基于逆变器的可再生生成的抽象大规模整合会导致功率系统的自然惯性减少。因此,与具有高惯性旋转同步发电机的传统系统相比,未来电力系统的动力学将更敏感。此开发是频率稳定性的潜在风险,需要利用快速控制的资源来动态频率稳定性支持。同时,需要开发基于逆变器的资源的新同步和控制方法,以确保未来电力系统的频率和同步稳定性。在本文中,基于基于逆变器的资源的网格形成和支持的基于频率锁定环的控制和网格同步可改善小型高压网络的频率稳定性。使用PSCAD软件进行模拟,主要重点是电池能量存储,以评估其位置的效果,增强的控制方案以及操作模式对频率稳定性的影响。在研究中,在电池电池充电和放电期间研究了电池存储位置,主动功率响应相关的控制参数,通信时间延迟和输入频率确定的影响。基于模拟,还提出了新的解决方案,以提高具有通用电网电池储藏的未来变量惯性电源系统的频率稳定性。
在这里,我们展示了一种策略,以合理地编程toehold介导的DNA链置换反应的延迟发作。该方法基于阻断链,通过与靶DNA的toehold结构域结合来有效抑制链位移。特定的阻滞剂链的酶促降解随后实现了链位移反应。阻滞剂酶促降解的动力学控制了链位移反应开始的时间。通过改变阻滞剂链的浓度和酶的浓度,我们表明我们可以很好地调整并调节链位移反应的延迟开始。另外,我们表明该策略是用途广泛的,可以通过不同的酶正交控制每个酶,每个酶都专门针对不同的阻滞剂链。我们使用RNase H以及两个DNA修复酶FPG和UDG以及相应的阻滞剂设计并建立了三个不同的延迟链位移反应。可以使用动力学建模可以方便地预测所达到的时间延迟,而无需不需要泄漏,可以通过高灵活性进行编程。最后,我们表明,延迟的链位移反应可以耦合到下游过程,并用于控制从DNA纳米电视中的配体释放以及DNA Aptamer抑制蛋白质。