公司背景:AI Arrive 是一家人工智能公司,其愿景是创建 AI 产品,以加速研究并增强我们对人类疾病的了解。CloseBy 是一个健康生活平台,它汇总不同的社区数据,以帮助个人在搬迁到特定区域时做出明智的决定。我们的使命很简单,就是使数据孤岛民主化,并呈现一个整体的画面,帮助个人做出更明智的决定。团队规模:4-5 名学生地点:远程,客户/团队会议将使用 Zoom 举行。项目摘要:AI Arrive 希望使用开源数据集(例如人口普查、空气质量开放数据、CDC 社会脆弱性指数、Zillow 住房和租金价格以及 python news-fetch)开发一个健康生活平台。目标是构建 ETL 提取系统和聚合开源社区数据和新闻文章的数据模型。另一个目标是使用 d3.js 和/或其他可视化工具开发视觉效果以在地图上显示数据。所有知识产权将归 AI Arrive 所有。关键技能/技术:开发 ETL 管道、使用数据库和使用 d3.js 进行可视化的背景将有助于完成这个项目。团队可以向客户寻求指导。学生福利:
•自然共卷感染产生的抗体至少持续90天•在这90天之后,有恢复感染的风险(我们已经看到几例 - 通常在6个月后大约6个月后)•第二种感染的症状往往更轻,但疫苗的副作用仍然更糟,而疫苗的副作用仍然比预期的抗疫苗•有早期的证据表明,在疫苗中持续3个月持续3个月,并且可能会持续3个月。•一些研究表明,该疫苗比自然感染可能诱导更好的免疫反应
智能专业化策略是塞尔维亚共和国政府为发展基于知识的社会而采用的关键文件之一。该战略是改善创新和研究生态系统并指导在此过程中被确定为优先领域的工业领域的未来投资的重要工具。国家智能专业化战略是在过去三年中通过详细的分析和协商过程制定的,在欧盟成员国最佳实践方法的指导下,发展过程由欧洲委员会联合研究中心监督。教育,科学和技术发展部与总理办公室一起协调了这一过程,并积极参与政府和非政府部门的所有相关机构,例如共和国公共政策秘书处,经济部,经济部,塞尔维亚商会和塞尔维亚和许多其他机构。确定优先领域,对主要挑战和机遇的分析,设定政策组合的愿景,目标和制定 - 得到了广泛的研究,随后进行了广泛的协商企业家发现过程。此过程包括塞尔维亚的全国讲习班与州,科学,研究,商业和民用部门的参与者,这是跨部门合作和与关键参与者在确定的优先领域中与关键参与者建立联系的非常重要的一步。在过去的几年中,塞尔维亚政府为创造了一个环境,以创造一个环境,以使塞尔维亚更快,更好的科学发展。国家智能专业化策略是该道路的延续,其中包括指导在战略开发过程中被认为是优先事项的行业的计划:未来的食品,未来的机器和制造系统,ICT和创意产业。我们的任务是在公认的行业中扩大高等教育和科学基础设施,在公认的行业中,经济利益是最大的,以便为发展基于知识的经济和社会的发展提供所有必要的条件。
搬迁沙田污水处理厂往岩洞的实时大数据人工智能环境影响评估 (AIEIA) 执行摘要 搬迁沙田污水处理厂往岩洞(本项目)的环境影响评估中,位于沙田马场和周边河道的彭福公园鹭鸟林被列为环境指标之一。目前,香港对鸟类生态栖息地的监测主要以人为观察为主,而人为观察的时间间隔有限。由于繁殖季节环境变化微妙,人为不易分辨鸟类行为的细微变化。渠务署藉此机会与香港科技大学合作,通过在项目下对彭福公园鹭鸟林进行先导观察,探索将最先进的绿色人工智能 (AI) 技术融入环境监测。观察是明智行动的第一步。完整的阵列数据收集系统 (ADCS) 和实时数据提取管道架构经过全面设计,可实现模块化,并可成功部署在各种结构中,确保在所有环境中可靠运行。ADCS 具有多种优势,可满足户外环境长期监测的需求:(i) 自动连续录制;(ii) 高分辨率视频;(iii) 高帧率视频;(iv) 巨大的本地数据存储;(v) 保护恶劣环境(例如极端天气条件)。采用一种新的视频压缩标准高效视频编码 (H.265) 来处理、存储和传输高分辨率视频,同时保持视频质量。在户外环境中实现数据采集自动化之后,实施了 AI 算法,以从长达数月的数据中检测鸟类。本研究重点是检测大白鹭和小白鹭,即研究地点的主要鸟类。AI 算法开发的主要挑战是缺乏香港鸟类的标记数据集。为了解决这个问题,我们利用 3D 建模制作了大白鹭和小白鹭的合成鸟类数据集。在虚拟图像的开发过程中,我们应用了姿势和身体大小等显著特征的大量变化,这反过来又迫使模型专注于专家用来区分鸟类物种的细粒度鸟类特征,例如颈部和头部。经过训练的 AI 模型能够在不同背景下以高预测分数区分和定位鸟类物种,平均准确率达到 87.65%。我们的人工智能 ADCS 解决方案比传统的人工观察具有多种潜在优势,能够在不同的天气条件下为不同物种的鸟类计数、行为研究、空间偏好以及种间和种内相互作用提供密集的表面。这项研究的结果和发现有利于未来规划环境监测工作以及项目下的工作阶段,以尽量减少对彭福公园鹭鸟林的潜在环境影响。
发电是由于从化石燃料中释放出的CO 2引起的温室气体(GHG)发射的主要贡献者。此外,电力也是能量向量之一,在不久的将来将进行许多应用[1,2]。作为未来能源系统的目标,必须确保其稳定性和可分配性。在所有可用的人中,太阳能是最合适的替代方案之一:它是干净,丰富且易于获得地球上任何地方的替代品。在不同的替代方案中,集中的太阳能(CSP)与热量储能(TES)结合使用,可以使电力符合峰值需求并解决供应 - 需求 - 需求耦合问题,从而使能量释放及其对电力的转化为必要时,并避免了固有的固有资源可用性的不稳定性[3]。尽管国际能源机构(IEA)估计,CSP将提供2050年产生的全球电力的11%[4],当前运营或开发的工厂主要使用具有基于硝酸盐的材料的明智TES系统。必须探索其他替代方案,因为它们有可能在降低成本,增强热能以及更高/更广泛的运营方面克服商业TES材料的几个缺点。tes与CSP一起,仍然有很长的路要走,他们被认为是一致,健壮,连续和竞争的替代方案。因此,将未来的能源管理和发电组合融合在很大程度上取决于TES材料的未来发展。这项工作的作者需要对最有希望的下一代TES材料进行全面评论,以分析其优势和劣势,总结叙事中发现的最相关的热力学特性,并定义并评估三个不同的关键性能指标(KPI),以帮助最大程度地适合特定的特定选择。
2. 例如,请参阅《美国药品定价:变革的处方,美国财政委员会审议前第一部分》,第 116 届国会(2019 年 1 月 29 日),https://www.finance.senate.gov/hearings/drug-pricing-in-america-a-prescription- for-change-part-i(存档于《太平洋大学法律评论》);《美国药品定价:变革的处方,美国财政委员会审议前第二部分》,第 116 届国会(2019 年 2 月 26 日),https://www.finance.senate.gov/hearings/drug-pricing-in-america-a-prescription-for-change-part-ii(存档于《太平洋大学法律评论》);《美国药品定价:变革的处方,美国财政委员会审议前第三部分》,第 116 届国会。 (2019 年 4 月 9 日),https://www.finance.senate.gov/hearings/drug-pricing-in- america-a-prescription-for-change-part-iii(存档于《太平洋大学法律评论》);降低处方药成本:减少美国能源和商业委员会审议前的市场竞争障碍,第 116 届国会(2019 年 3 月 13 日),https://energycommerce.house.gov/committee-activity/hearings/hearing-on-lowering-the-cost-of-prescription-drugs-reducing-barriers-to(存档于《太平洋大学法律评论》);知识产权与处方药价格:平衡美国司法委员会审议前的创新与竞争,第 116 届国会(2019 年 5 月 7 日),https://www.judiciary.senate.gov/meetings/intellectual-property-and-the-price-of-prescription-drugs-balancing-innovation-and-competition(存档于太平洋大学法律评论)。
中医(TCM)已被用来治疗中国的疾病约1000年。越来越多的证据表明,来自TCM的活性成分具有抗菌,抗增生性,抗氧化剂和凋亡诱导特征。然而,TCM的活性化合物的溶解度差和较低的生物利用度限制了临床应用。“纳米成型”(NFS)是新型和晚期药物传递系统。他们表现出改善药物溶解度和生物利用度的希望。尤其是“智能反应性NF”可以对目标部位的特殊外部和内部刺激做出响应,以释放荷载药物,这使他们能够控制靶组织内药物的释放。最近的研究表明,智能反应性NFS可以在疾病部位实现有目的的活性化合物,以增加患病组织中的浓度并减少不良反应的数量。在这里,我们回顾了“内部刺激 - 响应性NF”(基于pH和氧化还原状态)和“外部刺激 - 反应性NFS”(基于光和磁场),并专注于它们针对肿瘤和感染性疾病的TCM的活性化合物的应用,以进一步增强TCM在现代药物中的发展。
使用明智的储藏材料的太阳能温室的调查和改进需要能量,以创造适合冬季作物生产的气候。可再生能源似乎是加热温室的适当且可持续的能源。这项工作的目的是研究使用明智的储藏材料来改善内部温室气候的可能性。对半干旱地区对照和加热温室之间进行的实验测试进行了比较研究。提出了一种新设计的温室设计,该设计由一个经济的岩石床组成,该岩石是在集成的H形通道中采用的Simible Heating技术。温室捕获的多余的昼夜热量被存储到系统中,然后恢复以进行夜间加热。获得的结果表明,这种热存储系统有效,可以改善温室气候。与标准温室相比,夜间温度提高了3.2°C,相对湿度降低了9.6%。关键字:太阳能,热量存储,温室,加热系统控制,测量。1。引言最初设计的温室是由透明覆盖物限制的简单孵化器,该孵化器存储了长波长的热辐射以及短波长太阳辐射。此外,它提供了适当且适应能力的气候环境,以在产品数量和质量方面获得高收益。农业生产需要持续监测当地温室气候。使用可再生能源温室的主要功能是优化气候和生长因子和参数,例如湿度,光,温度和养分,以创造适合各种农作物的气候,并在最佳水平上进行主流[1,2]。许多研究人员在各种覆盖材料和不同类型的温室[4]研究了温室形状,结构和方向[3]的影响。在寒冷的季节(冬季),极端气候条件会导致温度下降,温室内部的湿度急剧增加。这尤其是在夜间发生的,并导致疾病并减慢植物发育的发展,这也会影响产量和产品质量。因此,在冬季,使用适当的加热系统是必要的,以改善内部气候因素和最佳农业生产。目前,常规单元用于加热温室,包括锅炉和化石燃料[5]。今天,化石燃料的成本正在大大增加[6],导致了更高的生产成本,而农民的成本降低了。
4 Aga Khan大学,卡拉奇Sindh私人439 1010 1449 5 AIR University,Islamabad Federal Public Public 3199 1331 4530 6 Al Hamd Islamic University,Quetta Balochistan私人484 108 592 7 Ali教育研究所7
也可以用于扩展可再生能源动力系统(例如浓缩太阳能(CSP))的运行时间。对于工业部门来说,所需的热量的43%大于400°C [1],而估计,随着120°C和1,700°C之间的废热,工业能源输入的20%至50%之间会丢失,仅美国的440个TWH在美国[2]。CSP的好处是相似的,研究表明,安装12个小时的全存储容量可以降低水平的能源成本(LCOE)10%[3]。尽管这种技术的经济和环境益处很多,但对于这些应用,TES的吸收很慢。这样做的原因是市售系统的一般高成本[4]和传统的两坦克熔融盐系统的巨大环境影响[4-5]。尽管在所有CSP植物的三分之一中被采用[6],但当前的最新两坦克熔融盐仍具有前进的几个重要局限性。这些限制包括系统的高成本[7,8],高冰点(220°C),需要昂贵的管道和储罐的冻结保护,最高工作温度为565°C。因此,为了使高温TE被更广泛地采用,必须确定一种存储材料,在经济上可行,丰富且易于使用,环保,稳定,在理想的工作温度(300-900°C)(300-900°C),并具有理想的物理和热物理特性(高热量能力,材料兼容,材料的兼容性等)粉煤灰被用作替代普通波特兰水泥(OPC),以降低混凝土的成本和环境影响。工业副产品的价值[9]或大量材料的使用是解决此问题的合适方法,因为这些材料既具有成本效益又具有较低的环境影响。为此提出了几种选择,例如处理过的石棉废物(Cofalit©)[10],基于粉煤灰的产品[11],电弧炉(EAF)炉渣[12]和沙漠砂[13]。这些材料的一种替代方法是使用使用工业废物(例如粉煤灰和黑色炉渣)制造的地球聚合物。除此之外,基于粉煤灰的混凝土可以量身定制,以表现出更高的抗压强度,对攻击性环境的耐药性,可工作性提高或对高温的抵抗力比传统混凝土具有更大的抵抗力[14]。在2013年,美国的粉煤灰产量估计为4840万吨,预测2033年将增加到4950万吨[15]。同时,2013年的粉煤灰利用率为44%,预计2033年将上升到65%[15]。即使达到了这个目标,此时将被填满超过4.5亿吨的粉煤灰。随着垃圾填埋场越来越稀疏,粉煤灰的再利用成为重要因素。到此为止,已经使用回收材料制造了一种新型的地质聚合物,以用作潜在的高温明智的存储选择。所提出的地理聚合物的实施是用于填充床的热级存储设计。这种设计显示出良好的可靠性和较低的成本,并与摩洛哥的CSP工厂一起运行了商业包装的系统[16]。在当前研究中,已经进行了新型地球聚合物的物理,嗜热和结构表征。此外,通过考虑材料的兼容性和耐用性以及公用事业量表电位系统的成本来研究该材料在高温TES中的适用性。然后将这些结果与其他研究的材料进行比较。
