Loading...
机构名称:
¥ 1.0

发电是由于从化石燃料中释放出的CO 2引起的温室气体(GHG)发射的主要贡献者。此外,电力也是能量向量之一,在不久的将来将进行许多应用[1,2]。作为未来能源系统的目标,必须确保其稳定性和可分配性。在所有可用的人中,太阳能是最合适的替代方案之一:它是干净,丰富且易于获得地球上任何地方的替代品。在不同的替代方案中,集中的太阳能(CSP)与热量储能(TES)结合使用,可以使电力符合峰值需求并解决供应 - 需求 - 需求耦合问题,从而使能量释放及其对电力的转化为必要时,并避免了固有的固有资源可用性的不稳定性[3]。尽管国际能源机构(IEA)估计,CSP将提供2050年产生的全球电力的11%[4],当前运营或开发的工厂主要使用具有基于硝酸盐的材料的明智TES系统。必须探索其他替代方案,因为它们有可能在降低成本,增强热能以及更高/更广泛的运营方面克服商业TES材料的几个缺点。tes与CSP一起,仍然有很长的路要走,他们被认为是一致,健壮,连续和竞争的替代方案。因此,将未来的能源管理和发电组合融合在很大程度上取决于TES材料的未来发展。这项工作的作者需要对最有希望的下一代TES材料进行全面评论,以分析其优势和劣势,总结叙事中发现的最相关的热力学特性,并定义并评估三个不同的关键性能指标(KPI),以帮助最大程度地适合特定的特定选择。

熔融盐,用于明智的热能储存

熔融盐,用于明智的热能储存PDF文件第1页

熔融盐,用于明智的热能储存PDF文件第2页

熔融盐,用于明智的热能储存PDF文件第3页

熔融盐,用于明智的热能储存PDF文件第4页

熔融盐,用于明智的热能储存PDF文件第5页

相关文件推荐