我们提出了一个设计小说,故事背景设定在不久的将来,火星大规模居住即将开始。我们创作这个小说的目的是解决地球和未来火星上当前的工作与生活问题。随着居家隔离措施的实施,既定的生产力和放松规范已被打破。小说创造了一个探索工作与生活界限的机会,这些界限随着居家隔离而改变,并将继续改变。我们的工作包括两个主要文物:(1)宣传招聘海报和(2)虚构的叙述。前者将火星上的工作与生活描绘成英雄、充实和有趣的。后者则形成了鲜明的对比,描绘了早期火星居民的生活经历。我们的声明借鉴了我们的设计小说,以反思工作结构、压力识别和管理、家庭和工作与家庭之间的沟通以及自动化的作用。
木星的复杂氛围一直是臭名昭著的红色斑点以来,它一直是吸引人和灵感的根源,首先是17世纪的瞥见。地球上另一个伟大的谜团是在其极地地区看到的光芒。木星上的极光实际上与地球上的极光一样 - 在靠近地磁杆附近的位置看到的壮观的光线显示,尤其是在太阳活动增强的时期。南方的灯通常只有科学家或企鹅(他们不太在乎基础物理学)。然而,木星的极光仍然是其极点永久的固定装置,其功率输入了三个数量级,比陆地“极光灯”大。木星的极光是在各种电磁范围内成像的,最著名的是哈勃太空望远镜(HST),并以期待已久的詹姆斯·韦伯(James Webb)太空望远镜(JWST)的惊人品质成像。
摘要。MICROSCOPE 空间实验旨在以比以往更高的精度测试等效原理。其原理是比较嵌入在绕地球运行的卫星上的空间加速度计中的同心测试质量的自由落体。由于所谓的无阻力系统,非重力对卫星运动的影响大大降低。MICROSCOPE 从 2017 年 4 月运行到 2019 年 10 月。对第一组测量的分析使等效原理测试的精度提高了大约一个数量级。在 10-14 的水平上,铂和钛中的一对质量没有检测到任何违规行为。MICROSCOPE 由 ONERA 和 OCA 作为科学领导者提出,由 CNES 作为项目经理开发,是第一个致力于低地球轨道基础物理的欧洲太空任务。ZARM、PTB 和 ESA 是欧洲的主要贡献者。
卫星行业正在迅速发展。启动的新小型卫星数量有显着增加,这与图像识别算法的发展快速相辅相成。尤其是卷积神经网络(CNN),在与计算机视觉相关的应用中实现了最先进的性能。在卫星上将AI Algo-Rithm结合起来,直接从轨道上观察并认识到任何自然灾害是一个重要的机会。本文提出了一个显着的挑战,这些挑战通常与地球观察小型卫星任务有关,并提出了通过将其与基于AI的图像识别结合在卫星上的基于AI的图像识别所带来的进一步挑战。本研究讨论了一种主要用于小型卫星的方法。2024 Cospar。由Elsevier B.V.这是CC下的开放访问文章(http://creativecommons.org/licenses/4.0/)。
抽象的基于空间的高光谱发射器,例如大气红外发声器,红外大气发声干涉仪以及极性轨道卫星上的交叉轨射红外声音,可从中获得辐射度测量值,从中可以从中取回大气温度和湿度的利润。这些检索产品是在全球范围内提供的,其空间和时间分辨率需要补充传统的数据源(例如辐射量和模型场)。本文的目的是证明新一代卫星高光谱数据产品中的现有天气和环境监测中现有的努力如何受益。我们调查了如何在时间序列中使用所有四个操作声音器的检索来监测导致严重当地风暴爆发的前向环境。我们的结果表明,独立,一致和高质量的高光谱信息对实时监视应用程序的潜在受益。
•火星是来自太阳的第四行星(地球是第三个行星),比地球收到的太阳能少约44%。•火星大约是地球大小的一半。•火星上的重力约为地球的三分之一,因此您的重量约为1/3。•火星日(称为Sol)为24小时,长37分钟。火星年为687地球日(大约2个地球年)。•火星表面可以分为两个半球。北半球的海拔较低,表面在地质上是年轻的火山平原。南半球的海拔高度较高,表面是较旧的高原。•火星大气非常薄,类似于200,000英尺的地球,并且主要是Co 2。•火星非常冷,平均温度为-70度,尽管温度可能从-200到+70度不等。•火星非常干。由于低大气压,表面没有液态水。地球和火星:什么相似?
卫星操作的空间环境非常苛刻,与地球不同。在太空中,几乎不可能修复卫星麻烦。由于这些原因,“高可靠性”是装载在卫星上的各种设备的最重要点。近年来,已经有需要延长卫星寿命的要求,这意味着包括推进器在内的各种设备也需要延长寿命。此外,由于电力在卫星中受到限制,因此减少功耗也很重要。此外,如果成本较低且交货时间较短,它们将在商业上具有竞争力。我们终于完成了如此理想的推进器的开发。(图1,表)顺便说一句,什么是推进器?与发射车分离后,卫星通过其自己的推进系统将卫星转移到预定义的轨道上。进入预定义的轨道后,卫星使用推进系统来保持轨道和态度控制。推进器是该推进系统的一部分,实际上会产生推力。
简介:岩石涂层在表面风化环境中普遍存在,对于了解地球表面系统内岩石、生物和周围环境之间的相互作用至关重要。[1],[2],[3] 在这些涂层中,岩石漆膜因其独特的深棕色至乌黑色、铁和锰氧化物的成分以及光泽的外观而尤为重要。在过去的两个世纪里,研究主要集中在岩石漆膜的结构和矿物学特征上,导致了关于其形成的各种理论。最近发现岩石漆膜中的有机微结构及其在极端环境中的存在表明,岩石漆膜可能在恶劣条件下充当微生物生存的有利微环境。[4],[5] 此外,美国宇航局的火星探测器在火星上发现了与陆地岩石漆膜相似的地层,促使地质学家研究地球的岩石漆膜,以更好地了解火星上的岩石漆膜及其在保护微生物方面的潜在作用。[6],
摘要 —卫星网络是星际航行的第一步。它可以为地球上的任何地方提供全球互联网连接,而由于地理可达性和高成本,大多数地区无法通过地面基础设施访问互联网。航天工业正在经历大型低地球轨道卫星星座的兴起,以实现普遍连接。研究界也迫切需要进行一些领先的研究来弥合连通性鸿沟。研究人员现在通过模拟进行工作,这远远不够。然而,真实卫星上的实验受到太空技术高门槛的阻碍,例如部署成本和未知风险。为了解决上述困境,我们渴望为普遍连接做出贡献,并建立一个开放的研究平台——天算星座,以支持真实卫星网络的实验。我们讨论了天算星座可能带来的好处。我们提供了两个案例研究,它们已经部署在天算星座的两颗实验卫星上。