[V1 3003] 任务期间预防性医疗保健 所有计划应提供培训、任务期间能力和资源,以监测生理和心理健康状况,并能够提供任务期间预防性医疗保健,这些计划应基于流行病学证据的概率风险评估 (PRA),该评估考虑到每个特定设计参考任务 (DRM) 的需求和局限性,以及任务持续时间、预计返回地球的时间、任务路线和目的地、预期辐射分布、作战概念等参数。术语“任务期间”涵盖任务的所有阶段,从发射、着陆行星体以及所涉及的所有表面活动,直至返回地球。任务期间预防性医疗保健包括但不限于:(有关完整标准,请参阅 NASA-STD-3001 第 1 卷)。
公司:IERUS Technologies, Inc. 地点:阿拉巴马州亨茨维尔 主题:N201-079 技术类别:先进电子学 第二阶段 提案标题:极其精确的星体跟踪器 SYSCOM:SSP FST 事件:WEST 2023 摘要:IERUS Technologies 和阿拉巴马大学亨茨维尔分校联手转化了由 NASA 喷气推进实验室 (JPL) 开发的焦平面计量技术。该技术能够高精度地定位焦平面阵列中的像素。事实证明,这种技术与精密望远镜相结合,可以测量焦平面上恒星的位置,精度优于 100 毫角秒。热分析表明,预期的环境不会使精度降低到这个极限以下。光学分析表明,标称设计将提供衍射极限性能。关键词:成像、计量、卫星、空间、可见光传感器、星跟踪器、焦平面阵列、干涉测量法 POC:Stephen Fox,stephen.fox@ierustech.com NAICS:541712
摘要Apollo Lunar地震数据中看到的强烈地震散射是最具特征的特征之一,这使地震信号与在地球上观察到的信号大不相同。散射被认为归因于地下异质性。虽然月球的异质结构反映了过去的地质活动和进化过程,但详细的描述仍然是一个悬而未决的问题。在这里,我们提出了通过完整的3D地震波传播模拟得出的上月壳中的地下异质性的新模型。我们的模拟成功地重现了阿波罗地震观测,从而导致了月球散射特性的重大更新。结果表明,月球的散射强度比地球上异质区域的散射强度高约10倍。量化的散射参数可能会使我们对月球的表面演化过程有限制,并使比较研究能够回答一个基本问题,即为什么地震特征在各种行星体上有所不同。
简介:冲击壁是火星和许多其他行星体的无处不在地质过程,对于整个太阳系中岩石和冰冷体的表面相对年龄至关重要;在过去的数十亿年中,包括古代和现代火星都发生了这样的火山口事件[1]。这些陨石坑可以根据其形态和形成过程进行分类,包括作为斜坡型特征。在火星上对这些火山口形态的分类历史上已经证明了困难和耗时,这主要是由于1)缺乏质量,高分辨率图像和2)图像的巨大图像。我们的新方法试图通过使用基于机器学习的方法(ML)方法在MARS(32°N至32°S)中的较低纬度(32°N至32°S)内的准确分类的Rampart火山口数据库来纠正此问题。
但也许没有什么比一艘真正的宇宙飞船更能激励年轻人的心灵了,今年我们完成了分享星体最成功的实验之一。2016 年,联盟号宇宙飞船搭载着第一位访问国际空间站的英国宇航员蒂姆·皮克安全返回地球,完成了对八个场馆的巡演,吸引了超过 130 万人参观。在每个场馆,这场激动人心的展览所引发的兴奋都是显而易见的,我们感谢赞助商三星为实现这个项目所给予的大力支持。在本报告中所有丰富的信息和统计数据中,我最喜欢的事实是,在它访问彼得伯勒大教堂的 12 周期间,教堂的游客人数增长了 810%。即使是铁路的先驱也会对此印象深刻。
2008 年,杜迪克博士加入美国海军天文台,担任天文测量部仪器科学家。担任该职务期间,她主要负责各种备受瞩目的太空任务的系统工程和仪器仪表。杜迪克博士于 2015 年晋升为部门主管,并于 2015 年至 2018 年领导天文测量部国防和任务支持部门。在此期间,她管理了多个天文测量项目,包括三个 USNO 望远镜系统的部署和自动化以及 USNO 制作的所有国防部天体参考框架星表的开发。她是国防部空间实验审查委员会 (SERB) 两项星体跟踪器空间实验的主要研究员,这两项实验分别于 2019 年和 2020 年在空间站 (STP-H6) 和 STP-Sat4 上成功发射。
先进飞行器计划 (AAVP) 电动飞机推进控制团队 航空声学推进实验室测试团队 Artemis I 欧洲服务舱飞行准备认证团队 商用超音速技术 (CST) X-59 音爆风洞测试团队 通信服务项目 (CSP) 参与者评估小组 (PEP) 团队 融合航空解决方案 (CAS) Qtech 团队 GRC X-57 电力电子团队 HOTTech-2 提案制定团队 Artemis I 欧洲服务舱辅助发动机资格飞行路径团队 光学显微镜模块操作团队 NASA C-5 高功率试验台开发团队 NASA 电动飞机试验台 (NEAT) 团队 皮拉图斯 (PC-12) 采购团队 动力和推进元件任务设计团队 小型航天器电力推进团队 Spacefan 设计和验证团队 星体检查和 Qcard 应用部署团队 TFOME 起重机和起重设备团队
具有挑战性的太空任务包括极低海拔的任务,其中大气是航天器空气阻力的来源,除非提供补偿方法,否则最终将决定任务的寿命。这种环境被称为极低地球轨道 (VLEO),定义为 h < 450 公里。除了航天器的空气动力学设计外,为了延长此类任务的寿命,还需要一个高效的推进系统。一种解决方案是大气呼吸电力推进 (ABEP),其中推进系统收集大气颗粒以用作电推进器的推进剂。该系统可以消除携带推进剂的要求,也可以应用于任何有大气的行星体,从而能够在低海拔范围内执行新的任务,延长任务持续时间。H2020 DISCOVERER 项目的目标之一是开发用于 ABEP 系统的进气口和无电极等离子推进器。本文介绍了进气设计的特点以及基于模拟的最终设计,收集效率高达 94%。此外,本文还介绍了射频 (RF) 螺旋式等离子推进器 (IPT),在评估其性能的同时,
用于药物发现的加速血浆蛋白质组学:血浆蛋白质组学正在通过通过液体活检对血液中的循环蛋白进行全面分析,从而彻底改变了药物发现。这种方法确定了早期疾病检测的关键生物标志物,加速了新型药物靶标的发现,并提高了药物发育的效率。血液中的蛋白质分析支持个性化的医学,从而对个人对治疗的反应提供了见解。总体而言,血浆蛋白质组学具有更精确,更有效的药物疗法的新时代的希望,对改善患者预后产生了重大影响。研究人员可以利用Evosep独特的端到端样品制备工作流程和Thermo Fisher的最新最新的Thermo Scientific Orbitrap星体质谱仪功能来加快对临床相关生物标志物的识别和验证。