背景。星系团中的湍流压力大小仍存在争议,特别是与动态状态和用于模拟的流体力学方法的影响有关。目的。我们研究大质量星系团内介质中的湍流压力分数。我们旨在了解流体动力学方案、分析方法和动态状态对宇宙学模拟中星系团最终特性的影响。方法。我们使用无网格有限质量 (MFM) 和光滑粒子流体动力学 (SPH) 对七个星系团的一组放大区域进行了非辐射模拟。我们使用了三种不同的分析方法,基于:(i) 偏离流体静力平衡,(ii) 通过亥姆霍兹-霍奇分解获得的螺线管速度分量,以及 (iii) 通过多尺度滤波方法获得的小尺度速度。我们将模拟星团样本分为活跃星团和松弛星团。结果。我们的模拟预测,与松弛星团相比,活跃星团的湍流压力分数会增加。这在基于速度的方法中尤其明显。对于这些方法,我们还发现 MFM 模拟的湍流比 SPH 模拟的湍流增加,这与更理想化的模拟的结果一致。预测的非热压力分数在星团中心内为几个百分点(松弛星团)和约 13%(活跃星团)之间变化,并向外围增加。没有看到明显的红移趋势。结论。我们的分析定量评估了流体动力学方案和分析方法在确定非热或湍流压力分数方面的重要性。虽然我们的设置相对简单(非辐射运行),但我们的模拟与之前更理想的模拟一致,并且代表着对湍流的理解更近了一步。
摘要 — 与农业活动相关的梯田是人类对景观最明显的改造之一,是世界各地重要的投资,它们最近与现代土地利用管理和侵蚀控制的关注产生了新的相关性。保护性农业和梯田管理是卫星地球观测和高分辨率地形测量中具有巨大潜力的应用。由于其高灵活性,昴宿星团卫星星座提供了新的高分辨率数字高程模型 (DEM),其亚米级分辨率可能对这项任务有用,它们在农田环境中的应用如今是一个开放的研究方向。这项工作提供了初步分析,从昴宿星团图像获得的 DEM 中执行自动梯田映射,并与 LiDAR DEM 进行比较。考虑了两种现有方法,快速线段检测器 (LSD) 算法和基于表面曲率的地貌测量方法。尽管 Pleiades DEM 的性能低于 LiDAR 模型,但结果表明,Pleiades 模型可用于自动检测大于 2 m 的梯田坡度,检测率超过梯田总长度的 80%。此外,结果表明,当使用嘈杂的数字高程模型时,地貌测量方法更为稳健,并且略优于 LSD 算法。这些结果首次分析了 Pleiades DEM 作为 LiDAR DEM 的替代品的有效性,也强调了未来在农田环境中监测大面积区域所面临的挑战。
布里格斯托克温暖空间 - **将于 2025 年 1 月 9 日恢复。** 2025 年 1 月天空指南祝大家新年快乐,希望今年的夜空比去年更加晴朗。月亮将在 13 日为满月,29 日为新月。行星:整个月从我们的位置都看不到水星。金星将在傍晚时分在西南方可见,并在 3 到 4 小时后落下。火星将整个月都可见,在午夜时分从东北偏东升起到南方约 60° 的高度,然后消失在黎明中。木星也将整个月都可见,傍晚时分从东南偏东升起到南方约 59°,并在清晨在西北方落下。土星将整个月在傍晚时分在西南方升起,并在 2 到 3 小时后落下。天王星将在傍晚时分在东南偏南方向高空约 55° 处可见(需要双筒望远镜或小型望远镜),并在月初清晨落下,月底午夜左右落下。海王星也将在傍晚时分在西南偏南方向 30° 处可见(需要双筒望远镜或小型望远镜),并在大约 4 小时后落下。10 日,月亮、木星和星团 M45(昴宿星团或七姐妹)将在傍晚时分在西南方彼此靠近。然后在 14 日,月亮和火星将在清晨时分在西南方彼此靠近。金星和土星将在 18 日至 20 日傍晚时分在西南方彼此靠近,但会在 21:00 之前落下。 30 日,巨蟹座的蜂巢星团 (M44) 将在午夜时分位于南方 57° 左右。该星团距离我们 577 光年,包含约 1000 颗恒星,但并非所有恒星都可用肉眼看到。最好使用双筒望远镜观看,最亮的恒星形成蜂巢形状,因此得名。晴朗的天空。彼得
VELIA 的设计灵感来源于南半球天空的杰作“船帆座”。它不仅仅是一个星团,更是一场穿越宇宙的旅程,一幅等待探索的无限可能。它的名字是拉丁语,意为船帆,象征着启航史诗般的旅程,就像我们戴着这款智能戒指踏上的旅程一样。就像船帆座一样,VELIA 代表着一个星座,一个围绕着戒指战略性放置的高科技传感器星座。这些光电元件形成了一个独特的空间星座,允许从一刀切的方法转变为真正非凡的方法。我们的尖端技术将 VELIA 智能戒指转变为针对每个用户的专用设备,就像为您的健康和幸福量身定制的西装一样。
Don Figer 研究大质量恒星、年轻星团和银河系中心。Gregory Howland 在量子光的空间自由度中创造、操纵和检测量子力学现象。Parsian Mohseni 使用固态物理、材料特性和化学开发微型半导体结构。Zoran Ninkov 研究和开发用于天文学、遥感和其他应用的仪器和探测器。Dorin Patru 将高效的数字数据处理架构应用于航空航天技术,包括低温图像传感器和立方体卫星。Michael Zemcov 使用新型地面和亚轨道观测平台研究早期宇宙的物理学。Jing Zhang 设计了高效的 III-Nitride 和 GaO 半导体光子、光电和电子设备。
行星的形成通常发生在星团中,恒星的飞越和相遇在其中起着重要作用。这些相遇产生的潮汐扰动会在原行星盘内诱发结构,例如螺旋臂和扭曲区域。该项目旨在通过利用盖亚目录数据识别过去涉及行星形成盘的相遇事件,量化这些恒星相遇对行星形成的影响。具体来说,学生将根据盖亚提供的初始位置和速度,通过整合恒星的轨道来识别潜在的近距离相遇。然后,学生将使用分析模型研究这些相遇如何影响盘的演化。最终,学生将解决在行星盘中观察到的子结构是否是过去相遇的结果,并评估此类相遇在行星形成中的作用。
这种整体方法适用于原住民和托雷斯海峡岛民。梦想的核心是歌曲线或歌曲螺旋,记录土地及其关系的神圣叙事。正如巴瓦卡组织所解释的那样:“歌曲螺旋是神圣的歌曲、故事和仪式。它们是关于了解国家,歌唱土地、天空和天堂。它们是对土地及其许多关系的深度映射,包括上下、周围、多层次和多维度”(巴瓦卡国家 2023,218)。例如,七姐妹歌曲线是最重要的歌曲线之一,因为它连接了澳大利亚东海岸和西海岸的社区,跨越 4,000 公里。歌曲线描述了七姐妹(以昴宿星团为代表)逃离追捕者的旅程,追捕者以猎户星座为代表。在这个梦想中,姐妹们试图逃离猎人,同时描述了土地特征的形成。这条歌线捕捉了两个星座的运动和位置,被认为是跨越语言、大陆和时间的文明所知的最古老的故事之一(Norris and Norris 2020)。
- 自 2020 年起担任 SCOSTEP 和 SCOSTEP/PRESTO 的奥地利代表 - 自 2019 年起担任格拉茨大学 COSPAR PSW 代表 - 自 2018 年起担任国际期刊《太阳物理学》编委会成员 - 自 2017 年起负责 e-CALLISTO 广播电台 AUSTRIA-UNIGRAZ 的维护 - 自 2015 年起担任 EGU-ST 科学官员和联络官 - 自 2015 年起担任国际空间环境服务 (ISES) 国家联系人 - 2024 年担任 ISSI 论坛成员“迈向建立欧洲太阳物理学共同体” - 2019-2024 年担任国际空间天气倡议 (ISWI) 国家协调员 - 2021-2023 年担任 ESA 太阳系和探索工作组成员 - 2019-2023 年担任 H2 星团日球层变异性的 iSWAT 主持人 (iswat-cospar.org) - 2017-2022 年担任联合国空间天气专家组 - 2012-2021 年 《地球物理学年鉴》(太阳和日球物理学)专题编辑 - 2015 年 科英布拉太阳物理会议 ASPCS 2015,第 504 卷编辑