■ 摘要 标准恒星光度测定法在二十世纪后半叶占据主导地位,并在 20 世纪 80 年代达到顶峰。与照相底片相比,它的引入充分利用了光电倍增管的高灵敏度和大动态范围。随着光电探测器量子效率的提高和波长范围进一步扩展到红色,标准系统得到了修改和改进,与原始系统的偏差也随之增加。所有光学和红外观测都革命性地转向区域探测器,这迫使标准系统进一步改变,许多宽带和中波段光度测定的精度和准确度受到影响,直到采用更合适的观测技术和标准降低程序。但最大的革命发生在全天空光度测量的产生过程中。Hipparcos/Tycho 是太空望远镜,但大多数望远镜(如 2MASS)是地面专用巡天望远镜。未来很可能不再使用某些标准测光系统测量物体,而是直接在虚拟天文台目录中查找大多数物体的星等和颜色。这篇评论将概述标准恒星测光的历史,并研究标准系统的校准和实现。最后,模型大气通量现在非常逼真,合成测光为校准所有测光系统提供了最佳前景。观测到的光谱测光的合成测光也理所当然地应该用于提供标准系统内的颜色,并深入了解不寻常恒星、星团和遥远星系的光谱和颜色。
■ 摘要 标准恒星光度测定法在二十世纪后半叶占据主导地位,并在 20 世纪 80 年代达到顶峰。与照相底片相比,它的引入充分利用了光电倍增管的高灵敏度和大动态范围。随着光电探测器量子效率的提高和波长范围进一步扩展到红色,标准系统得到了修改和改进,与原始系统的偏差也随之增加。所有光学和红外观测都革命性地转向区域探测器,这迫使标准系统进一步改变,许多宽带和中波段光度测定的精度和准确度受到影响,直到采用更合适的观测技术和标准降低程序。但最大的革命发生在全天空光度测量的产生过程中。Hipparcos/Tycho 是太空望远镜,但大多数望远镜(如 2MASS)是地面专用巡天望远镜。未来很可能不再使用某些标准测光系统测量物体,而是直接在虚拟天文台目录中查找大多数物体的星等和颜色。这篇评论将概述标准恒星测光的历史,并研究标准系统的校准和实现。最后,模型大气通量现在非常逼真,合成测光为校准所有测光系统提供了最佳前景。观测到的光谱测光的合成测光也理所当然地应该用于提供标准系统内的颜色,并深入了解不寻常恒星、星团和遥远星系的光谱和颜色。
目的。利用现有的最佳等离子体诊断技术研究第 24 个太阳周期内平静太阳区域的纳米耀斑,以推导出它们在不同太阳活动水平下的能量分布和对日冕加热的贡献。方法。使用了太阳动力学观测站 (SDO) 上的大气成像组件 (AIA) 的极紫外滤光片。我们分析了 2011 年至 2018 年之间的 30 个 AIA / SDO 图像系列,每个图像系列以 12 秒的节奏覆盖了 400 ″ × 400 ″ 的平静太阳视野,持续超过两小时。使用差异发射测量 (DEM) 分析来推导每个像素的发射测量 (EM) 和温度演变。我们使用基于阈值的算法将纳米耀斑检测为 EM 增强,并从 DEM 观测中推导出它们的热能。结果。纳米耀斑能量分布遵循幂律,其陡度略有变化(α=2.02-2.47),但与太阳活动水平无关。所有数据集的综合纳米耀斑分布涵盖了事件能量的五个数量级(1024-1029尔格),幂律指数α=2.28±0.03。导出的平均能量通量为(3.7±1.6)×104尔格cm-2s-1,比日冕加热要求小一个数量级。我们发现导出的能量通量与太阳活动之间没有相关性。对空间分布的分析揭示了高能量通量(高达3×105尔格cm-2s-1)簇,周围是活动性较低的延伸区域。与来自日震和磁成像仪的磁图的比较表明,高活动性星团优先位于磁网络中和增强磁通密度区域上方。结论。陡峭的幂律斜率(α> 2)表明耀斑能量分布中的总能量由最小事件(即纳米耀斑)主导。我们证明,在宁静太阳中,纳米耀斑分布及其对日冕加热的贡献不会随太阳周期而变化。
年轻的孤立中子星及其疑似位置是定向搜索连续引力波 (GWs) 的有希望的目标 [1]。即使没有从脉冲星的电磁观测中获得计时信息,这种搜索也可以以合理的计算成本实现有趣的灵敏度 [2]。包含候选非脉冲中子星的年轻超新星遗迹 (SNR) 是此类搜索的自然目标,即使在没有候选中子星的情况下,小型 SNR 或脉冲星风星云也是如此(只要 SNR 不是 Ia 型,即不会留下致密物体)。过去十年,已经发表了许多关于孤立、定位良好的中子星(除已知脉冲星外)的连续引力波的上限。它们使用的数据范围从初始 LIGO 运行到高级 LIGO 的第一次观测运行(O1)和第二次观测运行(O2)。大多数搜索都针对相对年轻的 SNR [3-11]。一些搜索瞄准了银河系中心等有希望的小区域 [4, 8, 11–13]。一项搜索瞄准了附近的球状星团,那里的多体相互作用可能会有效地使一颗老中子星恢复活力,从而产生连续的引力波 [14]。一些搜索使用了较短的相干时间和最初为随机引力波背景开发的快速、计算成本低的方法 [4, 8, 11]。大多数搜索速度较慢但灵敏度更高,使用较长的相干时间和基于匹配滤波和类似技术的针对连续波的专用方法。这里我们展示了对 12 个 SNR 的 O2 数据的首次搜索,使用完全相干的 F 统计量,该统计量是在代码流水线中实现的,该流水线源自首次发布的搜索 [3] 等 [5, 9] 中使用的代码流水线。由于 O2 噪声频谱并不比 O1 低很多,我们通过专注于与年轻脉冲星观测到的低频兼容的低频,加深了这些搜索(相对于 O1 搜索 [9])。这一重点使我们能够增加相干时间,并获得显着的改进