mung bean是一种重要的经济作物,被认为是一种植物蛋白成分含量较高的作物,被视为蔬菜和谷物。在各种与产量相关的性状中,一百种种子重量(HSW)对于确定绿豆的产生至关重要。这项研究采用了200条线的重组植物线(RIL)人群,这些线群是通过全基因组重新取代进行基因分型的,以在四个环境中鉴定出HSW相关的定量性状基因座(QTL)。我们识别了HSW的5个QTL,每个QTL都解释了2.46 - 26.15%的表型差异。其中,QHSW1在所有四个环境中均在1号染色体上映射,解释了表型变化的16.65-26.15%。精细的映射和基于地图的克隆程序,以及重组的后代测试,有助于将QHSW1的候选间隔缩小到506 kb。QHSW1基因组间隔和与QHSW1紧密联系的标记的这种识别对于改善种子重量较高的绿豆品种的繁殖工作可能是有价值的。
摘要 - 该研究旨在实施能够自主检测绵羊目标并在2D占用图上代表它们的系统,其最终目标是促进在UXV平台上自主牧羊。本文详细介绍了Blackboard System的开发,Blackboard System是一种用于自动目标检测和映射的软件解决方案。使用Python和C编程语言,Blackboard系统将单眼深度感测与自主目标检测,以产生全面的深度和目标图。这些地图是合并的,以产生从高架相机的角度捕获的操作区域的详细的2D鸟视图。黑板系统的独特功能是其模块化框架,它允许无缝更新或更换其深度传感和目标检测模块。
高清(HD)地图对于自动驾驶系统的安全至关重要。虽然现有技术启用了相机图像和板载传感器以生成对高精度地图的审核,但它们受到对单帧输入的依赖的限制。这种方法限制了它们在诸如OCClusions之类的复杂情况下的稳定性和性能,这主要是由于缺乏时间信息。此外,当应用于更广泛的感知范围时,它们的性能会降低。在本文中,我们介绍了流媒体,这是一种新颖的在线映射管道,擅长于视频的长期时间建模。流媒体网络采用了多点的关注和时间信息,可以使大型本地高清图的构建具有高稳定性,并进一步解决了现有方法的限制。此外,我们严重地使用了广泛使用的在线HD MAP构造基准和数据集,Argoverse2和Nuscenes,在现有评估协议中揭示了显着的偏见。我们根据地理跨度来启动基准,从而促进公平而精确的评估。实验结果验证了流媒体网络在所有设置中都显着超过现有方法,同时保持在线推断速度为14。2 fps。我们的代码可在https://github.com/yuantianyuan01/ streammapnet上使用。
多发性硬化症(MS)是一种神经炎症性疾病,其特征是髓磷脂(脱髓鞘)丧失,并在一定程度上是随后的髓磷脂修复(Remereliation)。为了更好地了解降低和再生的病理机制,并监测旨在再生髓磷脂的疗法的疗效,提供髓磷脂无创可视化的技术是有必要的。磁共振(MR)成像长期以来一直处于可视化髓磷脂的努力的最前沿,但直到最近才能访问由髓磷脂脂质蛋白双层本身产生的快速衰减的共振信号。在这里,我们表明,双层的直接MR映射可从MS患者的脑组织中产生高度特异性的髓磷脂图。此外,发现双层信号行为的检查揭示了正常表现的白色和灰色物质的病理改变。这些结果表明,髓鞘双层映射技术的体内实施有望,并在基础研究,诊断,疾病监测和药物开发中进行了预期应用。
Last but not least, the project will bridge the gap between hardware and software models by investigating mapping strategies targeting the following design constraints: (a) co-design and co-optimization with the underlying routing mechanism, so that smart mappings can allow more lightweight multicast hardware, (b) co-optimizing the SNN partitioning step with the placement one for efficient mapping of large scale SNNs to highly-parallel神经形态硬件。
©作者2023。Open Access本文是根据Creative Commons Attribution 4.0 International许可获得许可的,该许可允许以任何媒介或格式使用,共享,适应,分发和复制,只要您对原始作者和来源提供适当的信誉,请提供与创意共享许可证的链接,并指出是否进行了更改。本文中的图像或其他第三方材料包含在文章的创意共享许可中,除非在信用额度中另有说明。如果本文的创意共享许可中未包含材料,并且您的预期用途不受法定法规的允许或超过允许的用途,则您需要直接从版权所有者那里获得许可。要查看此许可证的副本,请访问http://创建ivecommons。org/licen ses/by/4。0/。Creative Commons公共领域奉献豁免(http://创建ivecommons。Org/publi cdoma in/Zero/1。0/1。0/)适用于本文中提供的数据,除非在数据信用额度中另有说明。
需要进行定量分析和模型,以将植物的细胞组织与其新陈代谢联系起来。但是,定量数据通常散布在多个研究中,发现此类数据并将其转换为有用的信息是耗时的。因此,有必要集中可用数据并突出其余的知识差距。在这里,我们提出了一种逐步的方法,可以从各种信息源中手动提取定量数据,并统一数据格式。首先,对拟南芥叶的数据进行了整理,检查了一致性和正确性,并通过交叉检查来源进行策划。第二,通过应用计算规则将定量数据组合在一起。然后将它们集成到代表Arabidopsis参考叶的独特综合,参考,可重复使用的数据汇编中。该地图集包含在细胞和亚细胞水平的叶片中发现的15种细胞类型的指标。
“ Cell2Fate是一种创新的工具,因为它深入研究了细胞成熟的时间特异性阶段的复杂性,并且在之前尚未实现。较旧的模型倾向于过度简化细胞轨迹的过程,因此,我们很高兴能够共享一个尖端的工具,可以将其应用于新数据集并以更详细,更准确的方式发现发现,” Alexander Aivazidis博士说:“ Alexander Aivazidis博士说:“欧洲分子生物学实验室(EMBL)和以前的Systute sistute sistute sistute sistute sangercome。
文献和多位专家指出了大型语言模型(LLM)的许多潜在风险,但对实际危害的直接测量仍然很少。AI风险评估到目前为止一直集中在衡量模型的功能上,但是模型的功能只是风险的指标,而不是衡量风险的指标。更好地建模和量化AI风险方案可以帮助桥接这种断开连接,并将LLM的功能与有形现实世界的危害联系起来。本文通过证明如何使用现有的AI基准来促进风险估计的创建,从而为该领域做出了早期贡献。我们描述了一项试点研究的结果,其中专家使用AI基准Cybench的信息来生成概率估计。我们表明,对于此目的,该方法似乎很有希望,同时指出可以进一步加强其在定量AI风险评估中的应用。
