半导体晶圆加工过程中产生的表面缺陷是微纳米加工面临的主要挑战之一。通常使用光学显微镜扫描晶圆,然后由人类专家检查图像。这往往是一个非常缓慢且令人疲惫的过程。由于可能出现的缺陷种类繁多,开发一种可靠的基于机器视觉的系统来正确识别和分类晶圆缺陷类型以取代人工检查是一项具有挑战性的任务。在这项工作中,我们开发了一种机器视觉系统,用于检查半导体晶圆和检测表面缺陷。该系统集成了光学扫描显微镜系统和基于 Mask R-CNN 架构的 AI 算法。该系统使用具有 MEMS、硅光子学和超导器件的晶圆在不同制造阶段(包括表面缺陷)的显微图像数据集进行训练。所实现的精度和检测速度使该系统有望应用于洁净室。
晶圆加工技术的趋势要求晶圆载体技术不断进步,以支持当今先进的半导体加工设施。我们的 20X 系列 200 毫米晶圆运输载体可满足当今 200 毫米晶圆厂的自动化、污染控制和生产力要求。这些晶圆载体专为先进的晶圆运输而设计,与传统的中低端晶圆载体相比,具有显著的性能优势,包括精确的晶圆存取、可靠的设备操作和安全的晶圆保护。
摘要 - 对于任何微电动机械系统(MEMS)设备的工厂最为明显的挑战之一,是该设备的低成本和高吞吐包装,以保护其免受环境颗粒,水分和配置的影响。在这项工作中,通过晶状级别CMOS(BICMOS)技术的130 nm双极CMOS(BICMOS)技术的RF-MEMS开关单一地整合到基于铝的后端线(BEOL)中,这是通过晶状级级别的薄级薄薄薄层薄层包装(WLE)。在晶片级封装包装之前,开发并证明了用于释放MEMS设备的湿式和蒸气释放技术。最终装置的封装是用Ti/Tin/Tin/Alcu/Ti/Tin层的堆栈实现为3- µm金属网格的晶圆级包装的。最后,将具有高沉积速率(HDR)的二氧化硅沉积过程用于释放孔的完整封装。通过低频C - V和D-Band时高频S-参数测量值评估了封装对RF-MEMS开关性能的影响。结果指示设备的完整功能,没有明显的性能下降。封装不需要额外的掩码,并且将其开发为8英寸晶圆级工艺,因此为RF-MEMS设备封装和包装提供了低成本和高吞吐量解决方案。
根据与诺斯罗普·格鲁曼公司的协议,合作者将有一段预定的时间(“设计期”),使用诺斯罗普·格鲁曼公司提供的模型和 PDK 进行设计。设计期结束后,合作者需要在规定的截止日期前向代工厂提交设计,以便将其设计纳入工厂运行。合作者还需要提交其设计和文档,以便在 STARRY NITE IP 存储库中存档。一旦掩模完成流片,诺斯罗普·格鲁曼公司将使用该掩模制造晶圆。请注意,诺斯罗普·格鲁曼公司不会对电路进行直流或射频测试;整个工厂流程中都会测量掩模上的过程控制监视器 (PCM) 结构。b. 合作者同意公布设计提交和掩模流片时间表。c. 请注意,美国政府对哪些设计将投入生产拥有最终决定权
摘要:将永久微磁体单片集成到 MEMS 结构中可为磁性 MEMS 应用提供诸多优势。一种名为 PowderMEMS 的新技术已用于在 8 英寸晶圆上制造永久微磁体,该技术基于通过原子层沉积 (ALD) 聚集微米级粉末。在本文中,我们报告了由两种不同 NdFeB 粉末粒径制备的 PowderMEMS 微磁体的制造和磁性特性。在 75 ◦ C 的低 ALD 工艺温度下实现了 423 mT 的剩磁和 924 mT 的固有矫顽力,使该工艺与 MEMS 技术兼容。借助 Wohlfarth 方程讨论了微磁体中的磁可逆机制。为了确保这种集成微磁体在不同应用环境中的可操作性,我们进行了一系列实验,系统地研究了热稳定性和腐蚀稳定性。粉末颗粒尺寸较大(d50 = 25 µ m)的 NdFeB 微磁体在空气中表现出较高的热稳定性。此外,通过等离子体增强化学气相沉积 (PECVD) 沉积的额外氧化硅钝化层显著提高了微磁体的腐蚀稳定性。所给出的结果证明了 PowderMEMS 微磁体的耐用性,使其能够应用于微流体、传感器、执行器和微电子等各个领域。
SEMI E62 描述了 FOSB 开门装置的特性和基本功能。E62 是针对设备配置的非常具体的标准,包括定位销、密封区域和锁销形状、位置、运动和扭矩。300 毫米 FOSB 必须与这些功能配合使用,但精确的配合功能尺寸、位置和设计由载体制造商决定。与 E62 FOSB 开门器配合的 FOSB 功能由 Entegris 设计规范定义。一般而言,这种兼容性涉及 E62 FOSB 开门器功能周围的适当间隙和相对位置。
保留所有权利。未经 PUB 事先许可,不得以任何形式或任何手段(电子、机械、影印、录音或其他方式)复制、存储于检索系统或传播本出版物的任何部分。
关键词:GaN、焊料、AuSn 焊料、溅射、共晶、芯片粘接摘要对于 GaN MMIC 芯片粘接,经常使用 80%Au20%Sn 共晶焊料。通常的做法是使用预制件 AuSn 将芯片粘接到 CuW 或其他一些基板上。在此过程中,操作员可能需要将预制件切割成芯片尺寸,然后对齐预制件、芯片和基板。由于操作员需要同时对齐三个微小部件(预制件、芯片和基板),因此这是一个具有挑战性的过程,可能需要返工。此外,预制件厚度为 1mil(在我们的例子中),这可能导致过量的焊料溢出,需要清理,因为它会妨碍其他片外组装。整个芯片粘接过程可能很耗时。在本文中,我们描述了一种在分离芯片之前在 GaN 晶圆上使用共晶成分溅射靶溅射沉积共晶 AuSn 的方法。它消除了预制件和芯片的对准,并且不会挤出多余的 AuSn。通过使用共晶溅射靶,它还可以简化靶材制造。下面给出了芯片粘接结果。引言宽带微波 GaN MMIC 功率放大器在国防和通信应用中具有重要意义。随着设备性能的提高,芯片粘接变得非常重要,因为它会极大地影响 MMIC 的热预算。80%Au/20%Sn 焊料已用于半导体应用超过 50 年,通常作为冲压预制件。然而,由于需要将 MMIC 芯片中的多个小块和焊料预制件对准到载体上,因此芯片粘接过程可能很繁琐且耗时。在芯片分离之前在整个晶圆上溅射沉积 AuSn 将大大简化芯片粘接过程。然而,溅射的 AuSn 成分对于正确的焊料回流至关重要。由于 Au 和 Sn 的溅射产率不同,AuSn 溅射靶材的化学性质和沉积的 AuSn 薄膜之间存在显著的成分变化 [参考文献 1]。下图 1 显示了 Au-Sn 相图。通过仔细控制溅射参数(功率、压力和氩气),我们能够从共晶成分溅射靶中沉积共晶 AuSn。制造共晶成分溅射靶要容易得多/便宜得多。
在 ESC/BSG 系统中,冷却气体(氦气)的漏流被测量为夹紧性能的标准:大量的 BSG 漏流意味着晶圆未正确夹紧,因此冷却气体未到达晶圆。相反,少量的漏流代表晶圆夹紧良好且冷却效率高。在这种情况下,20 sccm 或以上的氦气流量代表夹紧彻底失败以及工具故障。图 2 显示在“A”和“B”型载体上制备的样品晶圆的冷却气体漏流。在所有施加电压下,弯曲程度较高的晶圆的 BSG 流量最高,漏流值已达到最大值 20 sccm。但是,只要背面冷却气体压力较低,较高电压条件就会消除弯曲对 BSG 流量的影响。换句话说,需要将 BSG 压力降低至约 10 Torr 以下才能夹住弯曲的晶圆,这会导致背面冷却系统的边缘性更严格,并且等离子蚀刻等高温工艺中晶圆过热的可能性更高。
在本文中,我们考虑了对于 D2W 键合,封装集成商可以使用几种键合技术,从焊球到底部填充 TCB 和混合键合。讨论了各种特定的应用差距和技术载体,以强调 HVM 的采用目前还不是交钥匙工程,而与一直占主导地位的成熟引线键合相比,该技术似乎非常年轻。由于特定外形封装尺寸或设备应用对性能的要求很高,代工封装公司或使用内部封装工艺的大型半导体制造商,因此采用年轻的技术需要仔细规划,以解决潜在的差距和障碍,以实现具有成本效益、高产量和可扩展的技术。I/O 密度将受到关键因素的限制,例如键合对准精度、焊盘或凸块尺寸和金属界面、晶圆或载体晶圆形状/翘曲、如果采用了 CMP 技术,界面均匀性、退火和 DT 限制、底部填充特性、凸块金属选择、应力诱导裂纹形成;必须谨慎处理此处未考虑的其他差距和风险,以确保
