半导体晶圆加工过程中产生的表面缺陷是微纳米加工面临的主要挑战之一。通常使用光学显微镜扫描晶圆,然后由人类专家检查图像。这往往是一个非常缓慢且令人疲惫的过程。由于可能出现的缺陷种类繁多,开发一种可靠的基于机器视觉的系统来正确识别和分类晶圆缺陷类型以取代人工检查是一项具有挑战性的任务。在这项工作中,我们开发了一种机器视觉系统,用于检查半导体晶圆和检测表面缺陷。该系统集成了光学扫描显微镜系统和基于 Mask R-CNN 架构的 AI 算法。该系统使用具有 MEMS、硅光子学和超导器件的晶圆在不同制造阶段(包括表面缺陷)的显微图像数据集进行训练。所实现的精度和检测速度使该系统有望应用于洁净室。
主要关键词