摘要 在本篇观点文章中,我们评估了使用聚焦电子和离子束直接制造纳米级超导器件及其在量子技术中的应用的当前研究状况。首先,本文介绍了主要的超导器件及其通过标准光刻技术(例如光学光刻和电子束光刻)制造的方法。然后,展示了通过铣削或辐照对超导体进行聚焦离子束图案化,以及通过聚焦电子和离子束诱导沉积来生长超导器件。我们认为这些无抗蚀剂直接生长技术对量子技术的主要好处包括能够制作电纳米接触和电路编辑、制造高分辨率超导谐振器、创建约瑟夫森结和用于尖端传感器的超导量子干涉装置 (SQUID)、图案化高温超导 SQUID 和其他超导电路,以及探索通量电子学和拓扑超导性。
量子技术是一个快速发展的科学和工业领域 [1]。它们已经在多个不同的平台上得到实现,例如光子电路 [2,3]、里德伯原子 [4]、超导器件 [5] 等。最有前途的量子技术可能是量子计算机,即用于量子计算的量子设备,其中值得一提的是超导电路 [6,7]、离子阱量子计算机 [8,9]、光子芯片 [10,11] 和拓扑量子比特 [12]。学术实验室和工业公司都投入了大量的精力和资金来推动研究和技术改进,朝着所谓的量子霸权 [13] 迈进,即利用量子优势解决传统计算机无法解决的(数值)问题。这些设备的实际缺点是缺乏标准的硬件(甚至软件)架构,研究
MLE5003 材料科学与工程项目(8 个单元)MLE5208 光伏材料 MLE5210 材料建模与仿真 MLE5213 磁性材料 MLE5217 材料科学机器学习基础 MLE5218 人工智能材料发现 MLE5219 材料信息学:大数据的作用 MLE5220 材料有限元方法:基本概念和问题解决 MLE5221 可再生燃料和清洁水材料设计 MLE5222 用于能源应用的纳米和二维材料 MLE5223 可持续的合理材料设计 MLE5224 材料降解 MLE5225 可持续的电活性材料 MLE5226 未来可持续发展挑战的问题解决 MLE5228 超导和超导器件 MLE5229 微电子先进材料 MLE5230 微电子材料特性MLE5231 有机和纳米晶体光电子学 MLE5232 电介质材料及应用 MLE5233 未来的功能电子设备 MLE5234 光学材料:从量子光到纳米设备 MLE5235 二维材料 MLE5236 新型量子材料中的电子传输 MLE5238 生物电子学 MLE5239 生物界面材料 MLE5240 可持续性集光材料 MLE5241 机器人材料 MLE5243 材料人工智能最新主题 MLE5244 量子光子学材料与设备
MLE5003 材料科学与工程项目(8 个单元)MLE5208 光伏材料 MLE5210 材料建模与仿真 MLE5213 磁性材料 MLE5217 材料科学机器学习基础 MLE5218 人工智能材料发现 MLE5219 材料信息学:大数据的作用 MLE5220 材料有限元方法:基本概念和问题解决 MLE5221 可再生燃料和清洁水材料设计 MLE5222 用于能源应用的纳米和二维材料 MLE5223 可持续的合理材料设计 MLE5224 材料降解 MLE5225 可持续的电活性材料 MLE5226 未来可持续发展挑战的问题解决 MLE5228 超导和超导器件 MLE5229 微电子先进材料 MLE5230 微电子材料特性MLE5231 有机和纳米晶体光电子学 MLE5232 电介质材料及应用 MLE5233 未来的功能电子设备 MLE5234 光学材料:从量子光到纳米设备 MLE5235 二维材料 MLE5236 新型量子材料中的电子传输 MLE5238 生物电子学 MLE5239 生物界面材料 MLE5240 可持续性集光材料 MLE5241 机器人材料 MLE5243 材料人工智能最新主题 MLE5244 量子光子学材料与设备
近几年来,随着超导器件在单个芯片上达到数十个甚至数百个量子比特,量子计算已成为现实 [1,2],它可以解决那些即使使用最强大的传统超级计算机也需要耗费大量时间的问题。这些早期的量子计算机 (QC) 被称为有噪声的中型量子计算机,因为在如此小的量子比特阵列中无法有效抵消环境噪声。虽然某些算法确实可以充分利用数百个不完美量子比特的潜力 [3],但量子计算的伟大前景需要完美量子比特,而这只能在更大规模的量子比特阵列中实现,使用量子纠错 (QEC) [4,5]。半导体中的自旋量子比特 [6,7] 是迄今为止唯一有潜力达到如此规模的平台,为容错量子计算铺平了道路。量子点 (QDs) [6] 中的量子比特尺寸为几十纳米,可在单个芯片上集成数百万个量子比特。硅纳米结构中的自旋量子比特是尤其有吸引力的候选对象。凭借半导体行业数十年的经验,硅是研究最多的元素之一,拥有独特先进的制造技术。硅中的电子自旋量子比特在过去几年中已非常成熟,已达到与 QEC 算法的误差阈值相匹配的单量子比特和双量子比特门保真度 [8, 9]。然而,导带中弱的本征自旋轨道相互作用 (SOI) 需要使用微磁体来辅助全电量子比特控制。这种额外的复杂性给设备设计和制造带来了新的挑战。另一方面,硅和锗量子点中的空穴自旋量子比特受益于强直接 Rashba SOI [10],可将量子比特控制速度加速到几百兆赫 [11,12],而无需在设备中集成其他元件。在本文中,我们首先介绍并简要概述