钛合金具有极高的强度重量比,可用于多种关键的支持技术。然而,它们在严酷环境中的使用面临着其有限的抗高温氧化性能的挑战。为了解决这个问题,本研究采用金属有机化学气相沉积 (MOCVD) 方法在 Ti6242S 合金表面涂覆致密的非晶态氧化铝 AlzO 3 涂层,涂层成分包括三丙醇铝 ATI 和二甲基铝异丙醇 (DMAI)。等温氧化试验表明,与裸露材料相比,涂层 Ti6242S 试样的质量增益抛物线速率常数降低了两个数量级。DMAI Al 2 O 3 涂层合金在 600 °C 下经过 5000 小时的长时间氧化,重量增加 0.180 mg cm-2,而裸露合金的重量增加 1.143 mg cm-2。在这些条件下,会形成一个界面层,其中包含复杂的 TiiAlo 5 Sn 0 .5)(或 (Ti,Sn)zN) 相。在 50 至 600 °C 之间进行 80 次 1 小时循环氧化,结果显示涂层样品的质量增益为零。最后,在氧化试样的横截面上确定的硬度分布表明涂层合金的氧溶解非常有限。非晶态 AlzO 3 的 MOCVD 涂层具有巨大潜力,可有效、持久地防止 Ti6242S 合金氧化。
导电氧化物界面引起了广泛关注,这既是因为基础科学的原因,也是因为氧化物电子设备的潜力。这种设备技术成熟的一个重要差距是可扩展性和控制电子特性的途径,这可能会缩小设备工程空间。在这里,我们展示并解释了高度可调的导电氧化物界面的机制。我们使用可扩展且与行业兼容的原子层沉积 (ALD) 技术合成了非晶态-结晶态 Al 2 O 3 /SrTiO 3 界面。在 ALD 室中使用 NH 3 等离子体预处理,并将其持续时间用作电性能的调整参数,其中在室温下观察到三个数量级的薄层电阻跨度。对于导电性最强的样品,我们的结果与使用最先进的外延生长技术(例如脉冲激光沉积)制备的全晶态氧化物界面的最高载流子密度值相当。我们将导电性的起源确定为 NH 3 等离子体预处理引起的 SrTiO 3 还原引起的氧空位。这些结果提供了一种实现导电氧化物界面的简单、可扩展且与工业兼容的途径,具有广泛的参数空间,为氧化物器件工程提供了多功能且灵活的工具包。
导电氧化物界面引起了广泛关注,这既是因为基础科学的原因,也是因为氧化物电子设备的潜力。这种设备技术成熟的一个重要差距是可扩展性和控制电子特性的途径,这可能会缩小设备工程空间。在这里,我们展示并解释了高度可调的导电氧化物界面的机制。我们使用可扩展且与行业兼容的原子层沉积 (ALD) 技术合成了非晶态-结晶态 Al 2 O 3 /SrTiO 3 界面。在 ALD 室中使用 NH 3 等离子体预处理,并将其持续时间用作电性能的调整参数,其中在室温下观察到三个数量级的薄层电阻跨度。对于导电性最强的样品,我们的结果与使用最先进的外延生长技术(例如脉冲激光沉积)制备的全晶态氧化物界面的最高载流子密度值相当。我们将导电性的起源确定为 NH 3 等离子体预处理引起的 SrTiO 3 还原引起的氧空位。这些结果提供了一种实现导电氧化物界面的简单、可扩展且与工业兼容的途径,具有广泛的参数空间,为氧化物器件工程提供了多功能且灵活的工具包。
摘要:我们提出了一种自下而上的成功方法,设计了一种通用的等离子体增强原子层沉积 (PEALD) 超循环配方,以在 150°C 的相对低温下生长具有可调成分的高质量铟镓锌氧化物 (IGZO) 薄膜。原位实时椭圆偏振表征与非原位互补技术相结合,已用于优化薄膜的沉积工艺和质量,方法是识别和解决生长挑战,例如氧化程度、成核延迟或元素组成。开发的超循环方法通过调整超循环过程中的子循环比,可以轻松控制目标成分。与其他产生非晶态薄膜的低温沉积技术相比,我们在 150°C 下的 PEALD-IGZO 工艺可产生近乎非晶态的纳米晶态薄膜。通过超循环 PEALD 方法在低温下制备 IGZO 薄膜可以控制厚度、成分和电性能,同时防止热诱导偏析。关键词:IGZO、PEALD、超循环、XPS 深度剖析、电流密度
会议主题:用于太阳能收集的宽带隙材料 16:00 Luis Pereira 教授 (*) 里斯本新大学,葡萄牙 氧化物纳米结构在机械能收集中的应用 16:45 Frank Herklotz 博士 德累斯顿工业大学,德国 SnO 2 中的间隙氢供体:全面的光谱研究 17:00 Dwight R. Acosta Najarro 博士 墨西哥国立自治大学,墨西哥城,墨西哥 通过气动喷雾热解沉积的掺杂铼的 WO3 薄膜的电致变色性能恢复 17:15 Lars Korte 博士 (*) 柏林亥姆霍兹材料与能源中心,德国 高效钙钛矿/硅串联太阳能电池:材料和界面设计方面的挑战 19:00 特邀发言人晚宴(“Auerbachs Keller”) 2024 年 9 月 24 日,星期二 10:00 游览莱比锡美术馆 - MdbK (www.mdbk.de) 地点:Katharinenstraße 10 12:30 午餐(Aula) 会议主题:非晶态和非化学计量 TCO 14:00 Julia Medvedeva 教授(*)美国密苏里大学 材料基因组方法研究非晶态氧化物半导体中的缺陷 14:45 Takashi Koida 博士 日本筑波国家先进工业科学技术研究所 (AIST) 具有优异导电性的非晶态 SnO ₂ 薄膜:生产方法、特性和与非晶态 In ₂ O ₃ 薄膜的比较分析
事实证明,二维层状材料的氧化有利于形成氧化物/二维材料异质结构,这为低功耗电子设备的新范式打开了大门。硫化镓(II)(𝜷-GaS)是一种六方相 III 族单硫属化物,是一种宽带隙半导体,单层和少层形式的带隙超过 3 eV。其氧化物氧化镓(Ga 2 O 3)兼具大带隙(4.4-5.3 eV)和高介电常数(≈ 10)。尽管这两种材料都具有技术潜力,但原子级厚度的𝜷-GaS 的受控氧化仍未得到充分探索。本研究重点关注使用氧等离子体处理对𝜷-GaS 进行受控氧化,以解决现有研究中的重大空白。结果表明,在暴露于 10 W 的 O 2 时,能够形成厚度为 4 nm 的超薄天然氧化物 (GaS x O y ),从而形成 GaS x O y /GaS 异质结构,其下方的 GaS 层保持完整。通过将此类结构集成在金属电极之间并施加电压斜坡或脉冲等电应力,研究了它们在电阻式随机存取存储器 (ReRAM) 中的应用。所产生的氧化物的超薄特性可实现低操作功率,能耗低至每次操作 0.22 nJ,同时分别保持 350 次循环和 10 4 s 的耐久性和保持力。这些结果表明基于氧化的 GaS x O y /GaS 异质结构在电子应用,特别是低功耗存储设备中具有巨大的潜力。
摘要:黑曜石是一种含有 SiO 2 化合物的非晶态材料,也是从火山中开采出来的。黑曜石的 75% 是由石英组成的。石英是观察压电效应所需的材料。黑曜石最初来自地壳的地幔。当它与空气中的氧气接触时,它会突然凝固,没有任何机会转变为结晶状态。由于这个原因,它变成了非晶态二氧化硅。如果将一些与半导体工艺相关的化学物质(例如氟或氢)连接到硅(a-si:H)中,就会显示出光电导特性。辐射探测器具有吸收能力。在本文中,讨论了黑曜石是否可以作为吸收体用于辐射探测,此外,还评估了黑曜石是否被聚焦在固定目标机器上作为与亚原子粒子的发现相关的固定目标区域。
动力学“冻结”亚稳态纳米结构的合成仍然难以实现。这一限制严重限制了材料发现的当前范式。我们通过对异常氧化和亚稳态非晶态氧化铝 (a-AlO x ; 2.5
相变材料 (PCM) 可以在结晶状态和非晶态之间快速可逆地切换,具有显著的光学和电子对比度。[1–3] 这些特性被广泛应用于电子非挥发性存储器 [4–7] 和纳米光子学等一系列设备中。[8–10] 在基于 PCM 的随机存取存储器 (PCRAM) 中,SET 操作通过结晶实现,RESET 通过熔融淬火非晶化实现。 可以对更复杂的操作进行编程,包括迭代 RESET 和累积 SET,对应于中间和部分结晶/非晶态,用于神经启发计算应用。[11–18] 伪二元 GeTe–Sb 2 Te 3 系列上的 Ge–Sb–Te (“GST”) 化合物 [19] 已得到广泛研究,旗舰化合物 Ge 2 Sb 2 Te 5 和 GeSb 2 Te 4 目前被用作