市场新闻 6 功率半导体器件需求上升,推动宽带隙市场发展 微电子新闻 8 Fraunhofer IAF 报告创纪录的 640GHz InGaAs MOSHEMT 晶体管 •富士通荣获 IEEE HEMT 里程碑奖 •Qorvo 融资 2 亿美元 宽带隙电子新闻 14 SiCrystal 将向 ST 供应价值 1.2 亿美元的 150 毫米 SiC 晶圆 •II–VI 签署协议,供应价值 1 亿美元的 SiC 基板 •住友开始生产 150 毫米 GaN-on-SiC •GaN Systems 从 SPARX 获得资金 •IVWorks 融资 670 万美元 •GaN 电源充电器在 CES 上展出 •JST 的 NexTEP 计划生产基于 THVPE 的块状 GaN 生长设备 材料和加工设备新闻 33 Shin-Etsu 获得 Qromis 的 GaN 基板技术许可 •Aixtron 获得 PlayNitride 的 μ LED 生产资格 •BluGlass 和 Luminus合作评估 RPCVD 隧道结级联 LED LED 新闻 42 Plessey 在硅上开发原生红色 InGaN LED,用于 μ LED 显示屏 • TowerJazz 与 Aledia 合作开发纳米线 LED 工艺 • MICLEDI 从 imec.xpand、PMV、FIDIMEC 融资 450 万欧元 • Nakamura 将获得 NAS 奖 光电子新闻 43 TDK 投资 SLD Laser • ON Semi 与 SOS LAB 合作开发 LiDAR • Ambarella、Lumentum 与 ON Semi 合作开发 3D 感应 光通信新闻 51 II–VI 在 150mm GaAs 上推出高速数据通信 VCSEL,用于消费电子产品中的光纤 HDMI 电缆 PV 新闻 58 晶科能源与上海空间电源研究所合作
Entegris ® 、Entegris Rings Design ® 和其他产品名称是 Entegris, Inc. 的商标,如 entegris.com/trademarks 所列。所有第三方产品名称、徽标和公司名称均为其各自所有者的商标或注册商标。使用它们并不表示商标所有者与它们有任何关联、赞助或认可。
n近年来,使用CMOS兼容的过程制造硅光子IC(SI PIC)已使具有光学和电函数性具有成本效益的硅芯片的开发。1 - 5)这项技术是光子学 - 电力融合的高性能平台,可在各种行业提供有希望的应用。6 - 9)为增强硅光子学的整合和功能密度,已提出异质和杂交整合方法,以将各种材料系统与单个包装中的各种材料系统相结合。10,11)但是,基于PIC的模块的总成本受到测试,组装和包装过程的影响,这可能占常规INP PIC模块的总成本的80%。12,13)仅产品测试可贡献总成本的约29%,14)对于较不发达的硅光子技术技术,该图可能会增加到约60% - 90%。15)因此,减少测试,组装和包装成本对于降低基于SI PIC模块的整体成本至关重要。先前的研究采用了两种主要策略来降低测试成本:利用增强的测试结构,16)并增强了测试过程的自动化水平。14)在图片中,一种普遍的测试方法涉及信号通过具有不平衡分裂比的定向耦合器(例如99:1)。这种构造允许99%的信号正常通过波导,而1%的信号被击倒到测试分支。21)17)开发信号通常通过表面耦合器耦合到测试设备,从而促进了自动晶圆级测试系统用于原位和筛选测试的利用。18)然而,在组装和包装阶段,表面光栅耦合器(GCS)在带宽,极化和效率方面遇到限制。19)相比之下,利用点尺寸转换器(SSC)的边缘耦合提供了优点,例如带宽的带宽,降低极化敏感性和增强的耦合效率。20)然而,边缘耦合预先挑战,例如与SSC相关的较大足迹,固定的耦合位置,有限的对齐耐受性和耦合方面的严格规范。
摘要:功率转换效率(PCE)是评估太阳能电池的输出特性的主要参数。抗反射涂层(ARC)起着抑制太阳能电池表面的光损失的作用,从而增强了PCE。本文研究了晶体硅(C-SI)太阳能电池上双层抗反射涂层(DLARC)的不同材料。使用PV Lighthouse软件的晶圆射线示踪剂完成模拟硅太阳能电池的总体过程方法。检查了具有不同类型的双层的五个光捕获(LT)方案。c-Si的最大电势光电密度(J MAX)用ARC显示出比参考c-Si(无弧)的J max的改善。lt方案II:SIO 2 /TIO 2产生J Max的最大值,其中该值为42.20 mA /cm 2。这表明方案II具有最高的J MAX增强功能,值为10.01%。这一发现意味着DLARC适用于减少光损失,因此有效地提高了太阳能电池的性能。关键字:光伏,太阳能电池,抗反射涂层,光捕获,射线跟踪1。简介
表1显示了HS-8005系列阵容。为了减少划痕,日立化学化学已经开发了各种具有优化粒径和分布的产品。使用HS-8005-X3,抛光划痕可以减少到HS-8005的1/10或更少。我们建立了生产技术,以精心控制粒度和陶瓷颗粒的分布,以提供稳定的优质产品,并拥有陶瓷泥浆市场的全球最高份额。为了满足进一步减少刮擦的要求,Hitachi Chemical以NC系列形式开发了超细颗粒,以进行下一代浆液。虽然将常规的陶瓷颗粒粉碎以进行微插曲,但NC系列颗粒的大小是通过晶体生长法的泥浆,由于大尺寸颗粒而导致的划痕最小化。图3显示了HS-NC和HS-8005的外观。HS-NC是一种超细,透明的纳米级粒子。
pyrochlore氧化物由于其阳离子电荷和阴离子缺乏效率而被认为是各种电化学应用的活性候选物。同时,pyrochlore的阳离子取代是改善电极材料催化活性的关键参数。在此背景下,本文旨在合成二氧化甲氧化物氧化物氧化物氧化物纳米颗粒(BI 0.6 y 1.4 SN 2 O 7; byso nps),并构建抗抗毒性氯丙嗪(CHPMZ)的电化学传感器。通过共沉淀技术进行催化剂,然后进行热处理。分析方法,例如P-XRD,FT-IR,TGA和XPS,确认了Bi3þ的成功取代。通过Fe-SEM和TEM技术分析了准备的催化剂的形态,这表明纳米颗粒的大小为⁓20E 30 nm。从CV结果中,阳离子的取代增强了CHPMZ的电催化氧化,这是由于固有活性增强而具有较大大小阳离子的替代性和pyrochlore结构的阴离子缺乏效率。此外,计算出BYSO/SPCE上CHPMZ的异质速率常数为4.49 10 3 cm/s,这表明BYSO/SPCE上CHPMZ的氧化是准可逆的。用BYSO NPS修饰的电极显示较宽的线性范围(0.01 E 58.41 m m,78.41 E 1158 m m),高灵敏度(1.03 m A/ m m/ cm/ cm 2),低检测极限为3 nm。修改的电极显示出良好的选择性,可重复性和良好的稳定性,可检测CHPMZ。©2022 Elsevier Ltd.保留所有权利。此外,构造的传感器在人类血清和尿液样品中恢复良好的实践分析中显示出令人鼓舞的结果。
7.我们作为船舶修理厂和日本地区维护中心、横须贺 (SRF-JRMC) 和工程与规划发展计划 (EPDP) 的职责 SRF-JRMC 是美国海军舰艇的全方位船舶修理厂,包括复杂的维护、现代化、停靠、飞行和紧急维修。为了履行这些职责,SRF-JRMC 必须维持具有船舶修理专业知识的技术劳动力。为此,SRF-JRMC 建立了工程与规划发展计划 (EPDP),以长期维持技术人员。EPDP 的目的是在四年内培养和指导缺乏经验的人员成为完全合格的专家。申请此计划不需要先前的相关/专业工作经验,但申请人必须了解机械、电气、电子、结构或船舶建筑领域的一般工程原理和理论。欢迎具有大学工程知识的申请人参加该计划。EPDP 包括由主管和技术专家提供的船舶修理技术和理论课堂指导、工作现场的在职培训 (OJT) 以及 SRF-JRMC 劳动力发展 (WFD) 部门语言培训处提供的英语培训作为课程的一部分。还可以提供脱产培训 (OFF-JT) 以获得工作所需的认证。招聘以下两个部门的职位:1.代码 225 规划和估算部门
6. 职责 1. 接到命令后,乘消防车前往事故现场,在队长指挥下,执行灭火、救援、紧急医疗救护等辅助任务。灭火时,在现场连接并部署水带,通过喷水或喷射化学药剂进行灭火工作。携带灭火器,必要时可灭火。确定火源,隔离区域,防止火势蔓延。到达现场后,他们会根据需要使用撬棍或斧头等设备拆除障碍物。救出陷入火灾或烟雾中的人员并给予他们急救。 2.对消防、救援工作所需的工具、设备、水带、梯子、消防车等进行维护、调整及简单修理。 3.参加各种培训课程并上课,以获得工作所需的技能和知识并保持认证。 4.注意健康管理,锻炼身体,注意卫生。还履行分配的相关和附带职责。 突出的工作条件(如果有):过热或过烟、密闭空间、灾区或任何天气条件。 在厚木空军基地,他们有时会在喷气发动机性能测试期间在消防车内或附近等候。 * 此职位被指定为任务必需职位。任职者可能被指示在任何时间、任何交通/天气条件下报到和/或被指示继续执勤。您可能会被要求随时上班,无论交通或天气状况如何,或者您可能会被要求留在工作场所值班。 7. 资格/身体要求 BWT 3-3
海军设施工程系统司令部 (NAVFAC) 为海军部提供重要的基础设施和采购支持以及公共工程服务。NAVFAC 远东分部是海军岸上设施工程专家,负责管理远东地区的规划、设计、建造和维护。点击以下链接了解更多关于美国海军工程司令部远东分部的信息:https://pacific.navfac.navy.mil/Facilities-Engineering-Commands/NAVFAC-Far-East/About-Us/Host-Nation-Job-Vacancies/ 6. 职责 1. 作为美国海军工程司令部远东分部首席高级成本工程师,与美国海军工程司令部 PAC/LANT 和总部的技术设计经理/领导进行协调,解释并传达美国海军工程司令部成本指导,因为它适用于美国海军工程司令部远东分部负责区域内的成本工程开发。为日本、韩国、新加坡和迭戈加西亚岛完成的四个国家和三个地区的土木工程设计制定成本标准和指导,并将这些要求传达给 CI 和 FEAD 成本工程师。负责制定美国海军工程司令部远东分部的成本工程政策。 2. 在规范/成本部门主管的总体监督下,担任高级首席专业成本工程师,负责总部内部执行专业成本工程师设计。负责制作工程成本报告,为 NAVFAC 远东总部完成的设计和规范准备参数和高级成本分析。独立的政府成本估算对于完成 NAVFAC 一类和二类施工合同设计至关重要。审查和分析 AE 承包商和 NAVFAC PAC 准备的最终成本估算,以确保其与规范兼容并符合 NAVFAC 成本指令、技术要求和准确性。准备和审查成本估算,并就与成本问题相关的工程问题的纠正措施或替代方案提出建议。审查和解释资产管理完成的 DD 表格 1391s 成本,完成未指定的次要 MILCON 和家庭住房 MILCON 的区域 1391s 成本估算。完成用于设施和建筑系统的详细成本研究,分析建筑物、设施和公用设施系统是否符合日本、韩国、新加坡和迭戈加里卡的历史成本。3. 参加收购技术评估委员会;评估为海军工程司令部合同招标提供复杂的承包商成本提案和提交材料。评估并推荐承包商的成本能力提案和可能的合同授予。4. 应急工程;现任应急响应成本工程师,为海军工程司令部远东紧急承包提供支持。