在这个充斥着大量内容的世界里,推荐算法早已成为互联网必不可少的一部分。这种类型的人工智能有助于确定我们在网上看到什么(和看不到什么)。但尽管这可能很有帮助,但这些算法可能会带来意想不到的后果,例如产生过滤泡沫、延续偏见以及破坏我们的创造力、选择和机会。利用这项活动帮助您的学习者批判性地思考人工智能如何以有益和有害的方式塑造他们的在线体验。
这项荟萃分析证明了将人工智能算法与传统设计方法相结合对优化 1.5MW DFIG 风力涡轮机叶片的有效性。该研究成功解决了风力涡轮机设计中涉及多个相互竞争的目标的复杂问题,例如空气动力学效率、结构完整性和经济可行性。借助先进的优化算法,特别是灰狼优化方法,设计结果和计算效率得到了显著改善。优化后的叶片设计重量减轻了 8%,同时提高了结构耐久性和空气动力学性能。组合叶片设计的功率系数增加到 0.27,表明风力涡轮机的效率有可能提高,尤其是在低风速范围内,任何效率的提高都对整体能量捕获至关重要。
房颤(AF)是最常见的持续性心律失常,也是西方国家最重要的公共卫生问题和健康支出的原因之一(1)。AF患者的中风风险高5倍,死亡风险高2倍,而AF也会对生活质量产生负面影响(1,2)。早期检测对于最大程度地减少并发症至关重要。心电图(ECG)被认为是心律不齐检测的黄金标准,但其应用仅限于临床环境,使同时记录症状发作,具有挑战性(3)。此外,AF通常是无症状的,并且可能仍未发现,直到并发症(例如血栓栓塞事件)发生为止(4)。使用可穿戴设备通过传感器记录重要参数,可以通过提供有关患者在家的心血管状态的数据来实现移动诊断(5-8)。这些解决方案可以进行有效且易于筛查,并通过早期发现异常和适当的治疗干预来减少心血管疾病的并发症(7)。光绘画学的进步(PPG)
使用从拆除废物中产生的再生骨料来生产混凝土是减少建筑环境对环境影响的一种有希望的选择。然而,预测再生骨料混凝土的硬化性能是其在建筑领域大规模部署的主要障碍之一。由于传统的经验方法对于预测新的再生骨料配方的性能不太可靠,近年来,人工智能方法已得到广泛发展,以实现这一目标。在本文中,我们对预测再生骨料混凝土的机械性能和进行敏感性分析的人工智能 (AI) 方法进行了广泛的文献综述。本研究对文献中发现的主要方法和算法的适用性、准确性和计算要求进行了详尽的描述、检查和讨论。此外,还强调了各种算法的优点和缺点。人工智能算法已在各种预测应用中取得了成功,并且准确率很高。虽然这些算法是用于估计再生骨料混凝土混合物成分和机械性能的强大预测工具,但它们的性能高度依赖于数据结构和超参数选择。这项研究可以帮助工程师和研究人员更好地决策使用人工智能算法进行机械性能预测和/或优化再生骨料混凝土的配方。
原创文章 人工智能增强篮球罚球的运动学分析 BEKIR KARLIK 1、MUSA HAWAMDAH 2 1 埃波卡大学计算机工程系,地拉那,阿尔巴尼亚 2 塞尔丘克大学计算机工程系,科尼亚,土耳其 在线发表:2024 年 12 月 30 日 接受发表:2024 年 12 月 15 日 DOI:10.7752/jpes.2024.12321 摘要:问题陈述和方法:在篮球比赛中,罚球的成功与否取决于球的出手角度、在空中的正确位置以及最佳速度运动特征。本研究利用人工智能(AI)研究了篮球运动员在疲劳前后执行罚球的运动学特征。材料和方法:我们使用了各种监督机器学习算法,包括:k-最近邻 (k-NN)、朴素贝叶斯、支持向量机 (SVM)、人工神经网络 (ANN)、线性判别分析 (LDA) 和决策树。这些算法用于对从球员收集的运动数据得出的特征进行分类,以揭示他们在不同疲劳程度下的投篮机制的模式和变化。当球员在疲劳前后成功和不成功投篮时,在球释放点测量肘部、躯干、膝盖和踝关节角度。有两种方法可用于对这些特征进行分类:第一种方法是直接使用行数据;另一种是使用主成分分析 (PCA) 减少数据。对于这两种方法,数据在应用于分类器之前都在 0-1 之间归一化。结果:我们通过使用朴素贝叶斯分类器对行数据获得了 98.44% 的最佳分类准确率。此外,使用 PCA 对减少数据进行 ANN 的结果显示最佳分类准确率 95.31%。研究结果揭示了疲劳引起的投篮力学的不同模式和变化,并强调了机器学习模型在分析生物力学数据方面的有效性。讨论和结论:这些结果有助于制定训练计划,以提高疲劳状态下的表现和一致性。这项研究强调了人工智能和数据驱动方法在运动生物力学中的潜力,可以为运动员表现和疲劳管理提供有价值的见解。关键词:智能算法、运动生物力学、运动数据、疲劳引起的变化简介在对各种运动进行的研究中已经观察到功能技能和基于技能的运动模式之间的差异。评估功能技能比评估基于技能的运动模式更具挑战性(Goktepe 等人,2009 年;Abdelkerim 等人,2007 年;Chappell 等人,2005 年)。例如,Goktepe 等人(2009 年)利用统计分析来证明踝关节、肩膀和肘部角度对网球发球的影响。Abdelkerim 等人(2007)展示了篮球运动员的计算机化时间运动分析,而 Chappell 等人(2005)则研究了在进行疲劳前和疲劳后练习的三个停跳任务中落地和跳跃动作中改变的运动控制策略。评估基于技能的收缩、适当的肌肉发力时间和关节定位等因素相对容易。值得注意的是,个人之间的动作执行和技能习得存在差异。在篮球罚球中,关节角度是足以将投篮分为不同类别的基本特征(Schmidt 等人,2012;Ge,2024;Zhang & Chen,2024)。疲劳是人类活动的自然结果,会影响运动员在训练和比赛期间的认知和学习能力。虽然大多数研究认为疲劳是影响表现的一个关键因素(Forestier & Nougier,1998;Apriantono 等人,2006),但一些研究表明疲劳对篮球罚球表现没有影响(Uygur 等人,2010;Rusdiana 等人,2019;Li,2021;Bourdas 等人,2024)。例如,Uygur 等人(2010)基于统计运动学分析发现疲劳对罚球没有显著影响。同样,Rusdiana 等人(2019)使用 SPSS 分析了罚球运动学,而 Bourdas 等人(2024)则专注于疲劳对三分跳投的影响。Li 等人(2021)研究了疲劳对女子篮球运动员投篮表现的运动学影响。所有这些研究都采用了统计方法;文献中尚未发现用于分析篮球罚球运动学的人工智能或软计算技术。近几十年来,高效的数据分析显著提高了使用软计算方法的各个领域的生产力。然而,体育科学中的大多数研究都集中在特定的比赛上,以探索不同数据源或机器学习技术在结构分析和语义提取中的作用。这项研究是首次将机器学习方法应用于运动学分析一些研究表明疲劳对篮球罚球表现没有影响(Uygur 等人,2010 年;Rusdiana 等人,2019 年;Li,2021 年;Bourdas 等人,2024 年)。例如,Uygur 等人(2010 年)根据统计运动学分析发现疲劳对罚球没有显著影响。同样,Rusdiana 等人(2019 年)使用 SPSS 分析了罚球运动学,而 Bourdas 等人(2024 年)则专注于疲劳对三分跳投的影响。Li 等人(2021 年)研究了疲劳对女子篮球运动员投篮表现的运动学影响。所有这些研究都采用了统计方法;文献中没有发现用于分析篮球罚球运动学的人工智能或软计算技术。近几十年来,高效的数据分析已显著提高了使用软计算方法的各个领域的生产力。然而,体育科学中的大多数研究都集中在特定的比赛上,以探索不同的数据源或机器学习技术在结构分析和语义提取中的作用。本研究首次将机器学习方法应用于运动学分析一些研究表明疲劳对篮球罚球表现没有影响(Uygur 等人,2010 年;Rusdiana 等人,2019 年;Li,2021 年;Bourdas 等人,2024 年)。例如,Uygur 等人(2010 年)根据统计运动学分析发现疲劳对罚球没有显著影响。同样,Rusdiana 等人(2019 年)使用 SPSS 分析了罚球运动学,而 Bourdas 等人(2024 年)则专注于疲劳对三分跳投的影响。Li 等人(2021 年)研究了疲劳对女子篮球运动员投篮表现的运动学影响。所有这些研究都采用了统计方法;文献中没有发现用于分析篮球罚球运动学的人工智能或软计算技术。近几十年来,高效的数据分析已显著提高了使用软计算方法的各个领域的生产力。然而,体育科学中的大多数研究都集中在特定的比赛上,以探索不同的数据源或机器学习技术在结构分析和语义提取中的作用。本研究首次将机器学习方法应用于运动学分析
学者工程与技术杂志缩写关键标题:Sch J Eng Tech ISSN 2347-9523(印刷版)| ISSN 2321-435X(在线) 期刊主页:https://saspublishers.com 应用人工智能算法预测镰状细胞危机可能性 Essang Samuel Okon 1*、Kolawole Olamide Michael 1、Runyi Emmanuel Francis 2、Ante Jackson Efiong 3*、Ogar-Abang Micheal Obi 1、Auta Jonathan Timothy 4、Okon Paul Edet 5、Effiong Raphael Dominic 6、Ukim Akanimo Jimmy 5 1 尼日利亚阿克帕布约亚瑟贾维斯大学数学与计算机科学系 2 尼日利亚乌盖普联邦理工学院统计系 3 尼日利亚姆克帕塔克 Topfaith 大学数学系 4 尼日利亚阿布贾非洲科技大学纯数学与应用数学系 5 电气/电子学系Topfaith 大学,尼日利亚姆克帕塔克 6 卡拉巴尔大学数学系,尼日利亚卡拉巴尔 DOI:https://doi.org/10.36347/sjet.2024.v12i12.008 | 收到日期:2024 年 11 月 9 日 | 接受日期:2024 年 12 月 16 日 | 出版日期:2024 年 12 月 26 日 * 通讯作者:Essang Samuel Okon;Ante Jackson Efiong 亚瑟贾维斯大学数学与计算机科学系,尼日利亚阿克帕布约;Topfaith 大学数学系,尼日利亚姆克帕塔克
电子商务行业的增长使个性化成为为客户创造更具吸引力和更相关购物体验的关键策略。随着竞争加剧,电子商务公司竞相利用人工智能等技术来提升客户体验。电子商务中基于人工智能的个性化具有显着优势,包括能够通过深入分析用户数据提供更相关的产品推荐,最终提高用户体验和转化率。此外,这种个性化形式对转化率和销售率有积极影响,一些研究表明销售额增长高达 30%。客户忠诚度也得到加强,因为人工智能会根据个人喜好定制内容和推荐,让客户感到被重视。然而,实施人工智能的一个主要挑战是对隐私和数据安全的担忧。收集的大量数据可能会引发隐私问题,因为许多消费者对未经明确同意使用他们的个人数据感到不舒服。此外,人工智能系统收集的数据量不断增长,这增加了确保这些数据安全以防止隐私泄露的复杂性。因此,虽然人工智能可以显著提高电子商务绩效,但公司必须确保对隐私和数据安全的充分保护,以确保基于人工智能的个性化的长期成功。本研究旨在为电子商务公司提供见解,以优化基于人工智能的个性化的使用,并为管理和技术文献做出贡献。需要进一步研究以探索基于人工智能的个性化实施的成功因素。
摘要本文旨在讨论人工智能算法(AI)对法律体系及其对促进正义和公平的影响的重要性。基于描述性和解释性分析的这项纪录片研究讨论了AI在司法决策中使用的优势和风险,还解决了实施透明度时的技术和道德挑战。为了说明这一讨论,提出了两个算法不公正的案例,即未来的趋势和建议,以确保公正和公正的决定。从讨论中指出,透明度对于在司法机构中使用AI的信心和责任至关重要,需要技术与法律之间的协作方法来确保该工具的好处。关键字:人工智能;算法透明度;正义。
算法是“告诉计算机做什么的一系列指令”(Domingos,2015,第 1 页)。AI 经常使用算法。算法会在线向您推荐内容,并对大量信息进行分类,以提高计算机处理效率。单独检查算法的结构,它就像势能,既不是天生的好也不是坏,只是在等待行动。在实践中检查 - 类比的动能方面 - 算法是一个庞大而复杂的信息系统的一部分,当权者可以使用它们来说服、宣传特定观点、传播错误信息和操纵。算法很有用,尤其是从效率的角度来看,并且可以促进善(仁慈)。这篇评论不是反人工智能的。就我个人而言,我是一个人工智能乐观主义者。然而,在乐观与承认潜在陷阱之间取得平衡很重要,因为人工智能的不完善意味着存在危险。在最好的情况下,人工智能是一个前所未有的问题解决者。在最坏的情况下,人工智能是一种生存威胁。介于两者之间,但在负面方面,是可能伤害您的人工智能算法。
摘要 本文主要研究利用信息技术进行脑机交互,利用脑电图(EEG)信号检测大脑活动模式。在实验中,我们使用了机器学习方法,即以下分类器:Bagging、Boosting、Nearest Neighbors 和 Support Vector。实验从手指运动任务期间对 EEG 信号的真实观察开始。我们使用 10 倍交叉验证来评估每个分类器的性能,包括准确性和稳健性。结果发现,支持向量分类器在分类器中表现出最高的稳定性。实验的主要目标是确定分类器的稳健性的重要性,特别是在医疗应用中。总之,该实验有助于脑机交互领域的发展以及在医疗保健和其他地方具有实际应用的稳健神经接口技术的开发。