摘要 - 由于它们的高时间分辨率,对运动模糊的弹性提高以及非常稀疏的输出,事件摄像头已被证明是低延迟和低频带特征特征跟踪的理想选择,即使在具有挑战性的情况下也是如此。现有的事件摄像机的功能跟踪方法是手工制作的或源自第一原理,但需要广泛的参数调整,对噪声敏感,并且由于未建模的效果而不会概括到不同方案。为了解决这些缺陷,我们介绍了第一个针对事件摄像机的数据驱动的功能跟踪器,该功能摄像机利用低延迟事件来跟踪在强度框架中检测到的功能。我们通过新型的框架注意模块实现了强大的性能,该模块在特征轨道上共享信息。我们的跟踪器旨在以两种不同的配置进行操作:仅与事件或结合事件和帧的混合模式。混合模型提供了两个设置:一个对齐配置,其中事件和框架相机共享相同的视点,以及一个混合立体声配置,其中事件摄像头和标准摄像头并排放置。这种并排布置特别有价值,因为它为每个功能轨道提供了深度信息,从而增强了其在视觉探光和同时定位和映射等应用程序中的效用。
时间的操作方法是相对论理论的基石,正如适当的时间概念所证明的那样。在标准量子力学中,时间是外部阶段。最近,已经尝试了许多尝试在关系框架内延长适当时间的量子力学概念。在这里,我们使用类似的想法与相对论的质量能量等效性一起研究具有内部时钟系统的加速量量子粒子。我们表明,从粒子的内部时钟的角度来看,随之而来的演变是非热的。此结果不依赖于时钟的特定影响。是一个特别的结果,我们证明了两个重力相互作用粒子的有效哈密顿素体从任何一个粒子的时钟的角度都是非热的。
从大脑活动中重建复杂而动态的视觉感知仍然是机器学习应用于神经科学的一大挑战。在这里,我们提出了一种新方法,用于从非常大的单参与者功能性磁共振成像数据中重建自然图像和视频,该方法利用了图像到图像转换网络的最新成功。这是通过利用从整个视觉系统的视网膜主题映射中获得的空间信息来实现的。更具体地说,我们首先根据其对应的感受野位置确定特定感兴趣区域中的每个体素在视野中代表什么位置。然后,将视野上大脑活动的 2D 图像表示传递给完全卷积的图像到图像网络,该网络经过训练以使用带有对抗性正则化的 VGG 特征损失恢复原始刺激。在我们的实验中,我们表明我们的方法比现有的视频重建技术有了显着的改进。
头皮脑电图是头皮电位与时间的关系图,因此,由于电极在头皮上的位置,它可以捕获空间信息,以及脑电波变化的时间信息。在本文中,我们提出了一种新方法,通过将信号合并到稀疏的时空框架中来组合表示空间和时间信息,以便计算机视觉领域的深度学习算法可以轻松地对其进行处理。在脑电图情绪识别设置中,还定义了模型对测试数据的熟悉度,并引入了一种数据拆分形式,使得模型必须在熟悉度最低的集合上执行。在 DEAP 数据集上训练 CapsNet 架构以执行跨主题二元分类任务,并分析了使用贝叶斯优化对超参数的调整。该模型报告称,对于 LOO 主题,最佳情况准确率为 0.85396,平均情况准确率为 0.57165,对于未见主题-未见记录分类,最佳情况准确率为 1.0,平均情况准确率为 0.51071,这与其他文献报告的结果相当。
1有关更多详细信息,请参见https://www.moodys.com/research/moodys-affirms-the-czech-republics-aa3-ratings- and Maintains-Stable-pr_439412。
工作记忆 (WM) 表示暂时存储在大脑中的信息,是人类认知领域的基础研究课题。脑电图 (EEG) 可以监测大脑的电活动,已广泛应用于测量 WM 水平。然而,一个关键挑战是个体差异可能会导致无效的结果,特别是当建立的模型遇到不熟悉的受试者时。在本文中,我们提出了一种具有空间注意的跨受试者深度适应模型 (CS-DASA),以推广跨受试者的工作量分类。首先,我们将 EEG 时间序列转换为包含空间、光谱和时间信息的多帧 EEG 图像。首先,CS-DASA 中的受试者共享模块从源受试者和目标受试者接收多帧 EEG 图像数据并学习共同的特征表示。然后,在特定主题模块中,实施最大平均差异来测量再生核希尔伯特空间中的域分布差异,这可以为域自适应添加有效的惩罚损失。此外,采用主题到主题的空间注意机制来关注目标图像数据中的判别性空间特征。在包含 13 个主题的公共 WM EEG 数据集上进行的实验表明,所提出的模型能够实现比现有最先进方法更好的性能。
自量子光学诞生之初,人们就知道光学状态的非经典特性(如压缩、反聚束和纠缠)易受衰减影响 [1]。通过衰减器(有损通道)传播时,光学状态的量子特征与环境共享,并在追踪环境时丢失。因此,人们长期以来一直努力减少制备和操纵这些状态时的损失,以增强其在量子信息处理 [2]、量子计量 [3] 和其他应用中的实用性。在本文中,我们挑战了这一范式,展示了一类非经典纠缠光态,它们不仅可以在衰减介质中传播而不受损失的影响,而且是由于这些损失而产生的。也就是说,任何其他状态进入并传播通过该介质后,都会转换为该家族中的状态。我们将这些状态称为光学暗态( OD ),类似于原子的暗态,原子的暗态虽然与原子跃迁共振,但不吸收光。与原子暗态类似, OD 态出现在 Λ 形原子系统中。两个基态通过两对场以类似拉曼的方式相互耦合。在每对场中,一个场是量子,另一个场是强激光(图 1 ( a ))。通过这种方式,量子场直接与原子基态相互作用:模式 ˆ a 下光子的吸收会将光子从能级 ∣ ñ 1 转移到能级 ∣ ñ 2 ,而模式 ˆ b 具有相反的效果。当两种模式都充满光子时,这些过程会叠加发生。此外,如果这些模式的状态是具有特定压缩参数(由光学模式和物质之间的有效耦合常数之比决定)的双模压缩真空(TMSV),则这两个过程会发生干涉相消,从而有效地阻止原子态和光学态的相互作用。然后,即使基态相干性衰减,该 OD 态也会在这种原子的气体中传播而不会发生任何损失或演变。这里研究的现象的物理与 [ 4 , 5 ] 的物理密切相关,其中两个宏观原子集合的纠缠是由耗散现象驱动的。事实上,正如我们在下面展示的,它们是产生光和原子纠缠态的相同的过程。
最大水平解像度为 800 线的速度扫描调制通过控制信号黑白部分之间的转换速度,清晰地定义边缘和轮廓。3:2 下拉:对转换为视频的电影作品的校正。3:2 下拉补偿了电影(每秒 24 帧)到视频(每秒 30 帧)帧速率转换中的固有缺陷,使图像更平滑,运动失真更少。INVAR 荫罩:一种合金材料,用于保持焦点和亮度的一致性,而不牺牲色彩纯度。色温控制 - 可通过屏幕显示选择正常、暖色和冷色。4 个视频预设可根据所观看的节目类型优化图像。预设:标准/动态/电影/自定义,用户可调整亮度、对比度、锐度、色彩和色调。垂直压缩可在“变形”宽屏源(如 DVD)期间保持垂直分辨率和质量。暗色调显像管可最大限度地减少反射并改善色彩和图像对比度。动态黑电平扩展和白峰值限制器进一步提高了图像对比度。自动显像管老化偏差可自动调节白平衡,即使使用多年后仍能保持一致、最佳的性能。数字视频降噪可用于提高图像质量。181 通道合成调谐倾斜校正允许根据地球磁场进行图像调整。数字底盘提高了整体可靠性。
作者的完整列表:Simonoff,Ethan;加利福尼亚理工学院,洛伦佐化学范·穆诺兹(Van Munoz);加利福尼亚理工学院,内森·刘易斯;加利福尼亚技术,化学和化学工程研究所
摘要:本文的目的是在参考动态介质的框架内呈现真空能和暗能量,并解释两个能量之间的现象差异。动态培养基由实体(称为gravitons)组成,其速度的速度平均速度决定了空间中每个点的介质的频率的速度。表明,在黑洞的地平线内(由Schwarzschild Radius定义),频率的速度大于光速,这意味着吸引人本身对光的速度更高。两个光子以两个相反的方向传播的量子纠缠是由于重力子的连接。因此,提议重力以速度V g r宇宙t planck 2.4 10 69 m/s移动,这使得可以保证两种光子在宇宙中的位置不可能,并且无法测量光子触发时间所花费的时间以降低其双胞胎光子的时间,因为它比Planck Time t planck planck少了。建立了真空能的表达和在参考动态介质的框架内的深色能量的表达。两个表达式e真空和e黑暗以及最遥远星系的速度V Galaxy的速度使Gravitons速度的近似值