我们通过实验证明,使用幺正压缩协议可以增强(放大)涉及量子谐振子的一大类相互作用。虽然我们的演示使用了单个被捕获的 25 Mg + 离子的运动状态和内部状态,但该方案通常适用于仅涉及单个谐振子的汉密尔顿量以及将振荡器与另一个量子自由度(如量子比特)耦合的汉密尔顿量,涵盖了量子信息和计量应用中大量感兴趣的系统。重要的是,该协议不需要了解要放大的汉密尔顿量的参数,也不需要压缩相互作用与系统动力学其余部分之间有明确的相位关系,这使得它在信号或相互作用的某些方面可能未知或不受控制的情况下非常有用,例如寻找新形式的暗物质。
抽象的超晶体是极度弱相互作用的巨大颗粒,从冷冻的父粒子的后期继承了其遗物丰度。在超对称模型中,Gravitinos和Axinos代表了两个最动机的超级弹力。在本文中,我们从各种宇宙学观察中对这些情况进行了限制,这些观察探究了它们的生产机制以及早期宇宙中的SuperWIMP运动学特性。我们特别考虑了大爆炸核合作论和宇宙微波背景(频谱解剖和各向异性)的观察结果,这些背景限制了后期衰减的分数能量注入,以及从Lyman-α森林和其他小规模结构可观察的温暖和混合的暗物质约束。我们讨论了compentaryconstraintssfromcolliderexperiments,andargeeth宇宙学考虑排除了Gravitino和Axino Superwimp参数空间的重要部分。
矮球星系(DSPHS)是最暗的物体(DM),具有可忽略的预期天体伽马射线发射。这使附近的DSPHS间接搜索DM粒子信号的理想目标。对其DM含量的准确知识使得在DM歼灭的速度加权横截面上得出强大的约束。我们使用常见的最大似然方法报告了Fermi-Lat,Hawc,H.E.S.S.,Magic和Veritas观察到的20个DSPH的联合分析,以最大程度地提高DM搜索对这些目标的敏感性。将提出七个歼灭通道的结果,并涵盖从5 GEV到100 TEV的一系列DM质量。此外,将通过比较从两种不同的J因子集合获得的结果来讨论来自DSPH暗物质分布的天体物理J因子的系统不确定性。
在21世纪之交附近,弱规模上的超级主体理论预测的引人注目的签名激发了即将到来的实验中对新发现的预期,例如大型强子对撞机和下一代地下暗物质直接检测实验(1,2,2,3)。因此,高能物理学领域的大部分活动都是由一小部分常见范式驱动的,而这些范式可能超出了标准模型。今天,尽管这种实验的持续操作当然很可能很快可能很快发现了Electroweak(〜TEV)量表附近的新物理学,但可能已经大部分的发现潜力已经耗尽了。这种状况导致社区的先验放松了新的物理学,首先要揭露新物理学的地方(4)。例如,尽管发现暗物质与标准模型的其他基本问题(例如层次结构问题)相关,但没有理论上具有吸引力,但没有第一个原理的原因。,高能的新物理学也可能超出了最强大的未来攻略者的范围。但是,即使这是真的,能量极高的动态也会引起新的虚弱耦合的低能自由度,激励观察性签名,这些观察性签名可用于小规模的精确实验。受到先验的这些转变和数据的渴望,许多高能物理学家,牙的和实验家都已经深入参与了构思和开发针对新物理学低能标志的小规模探针(8,9)。这种假设颗粒的两个例子以及本综述的重点是“轴轴”和“暗光子”,即普通锥形和光子的暗区类似物,它们在涉及额外维度和量规耦合统一的理论中无处不在(5,6,7)。这些努力涵盖了许多不同的子场,涉及凝聚态物理,原子物理学和量子信息科学之间的联系。与二十年前相比,高能物理界发现自己处于多元化增加的健康状态。在本综述中,我们旨在为对实验室精确探针和深色光子的非专家提供有用的切入点。在过去的二十年中,有多种文章(例如,参见参考文献。(10,11)),该)调查了当时的最著名实验方法的发展,例如cav-
本期杂志的封面图片非常漂亮,由 200 名参与 2015 年粒子物理摄影漫步的摄影师之一拍摄,邀请读者了解 CAST 的未来发展,以及 XENON 如何准备成为最灵敏的直接暗物质搜索实验。同时,我们将带您走进 ATLAS 和 CMS 实验的未来,这些实验已经在努力为 LHC 的高亮度阶段 (HL-LHC) 做好准备。回到现在,我们报道了 LHC 在配置为铅离子对撞机时打破的最新记录,以及一篇关于在 PS 成功测试的创新提取系统的文章。最后但并非最不重要的是,关于强子疗法的专题证实了粒子如何有效地帮助我们对抗癌症。要订阅新期刊提醒,请访问:http://cerncourier.com/cws/sign-up。
被电磁场捕获的电子和离子长期以来一直是重要的高精度计量仪器,最近也被提议作为量子信息处理的平台。这里我们指出,由于这些系统具有极高的荷质比以及低噪声量子读出和控制,因此它们还可用作高灵敏度的带电粒子探测器。特别是,这些系统可用于检测比典型电离尺度低许多数量级的能量沉积。为了说明,我们提出了一些粒子物理学中的应用。我们概述了一种无损飞行时间测量方法,该方法能够对缓慢移动的准直粒子进行亚 eV 能量分辨率测量。我们还表明,目前的设备可用于对环境暗物质粒子携带小电毫电荷≪ e 的模型提供具有竞争力的灵敏度。我们的计算可能还有助于表征来自带电粒子背景的量子计算机噪声。
电子邮件:roberto.moretti@mib.infn.it摘要 - Quantum Sensing是一个快速扩展的研究领域,在基本物理实验中找到了其应用之一,例如寻找弱EM耦合的暗物质(DM)候选候选者,NAINELELENEXION和DALK PHOTCON。超导Qubits和制造技术的最新发展对量子传感的推动进展产生了重大贡献,这要归功于它们对AC领域的高灵敏度,并且有可能基于量子非demolition(QND)[1]和直接检测来利用基于量子非demolition(QND)的检测方案。QND包括在量子系统和被困在空腔中的光子之间建立一个纠缠状态,从而使我们能够在不吸收的情况下推断光子的存在,从而实现多个测量值,从而指数抑制了深色计数速率。相反,直接检测方案依赖于共振,低功率,暗物质诱导的交流场,其量子态缓慢地旋转速度状态,该量子态可以在高碳状态的thermons和fluxoniums中衡量。此贡献是INFN QUB-IT协作的一部分,该协作旨在通过量子超导设备来推进微波单光子检测。演示将说明QUB-IT状态以实现数百微秒连贯的时间和工程DM检测设置。这项工作研究了平面transmon量子芯片芯片的建模和设计优化,利用集结振荡器模型(LOM)[3]和能量参与率(EPR)[4] [4]来提取汉密尔顿参数。基于EPR的新型策略是为了增强通过有限元模拟估算两级系统(TLS)损失估算的准确性。还讨论了通过耦合的多Qubit系统提高DM敏感性的可能性,以及在国家标准技术研究所(NIST)制造的单量芯片(NIST)的表征以及模拟和测量的Qubit参数之间的彻底比较,例如弹性频率,Anharmormonity和Anharmormonity和Anharmonicity and coupling Lustertic lofter与读取结构。这项工作中提出的初步结果有望进一步增强量子传感平台的灵敏度和可靠性,这可能会超过当前光DM搜索实验的局限性。
美国宇航局及其四个航天局合作伙伴——加拿大航天局 (CSA)、欧洲航天局 (ESA)、日本宇宙航空研究开发机构 (JAXA) 和俄罗斯国家航天公司“Roscosmos”——在二十多年的载人空间站运行期间进行了数千次太空实验,并吸引了数千万学生参与。空间站上的技术演示和开发推动了最先进的应用,对地球和太空都有好处。空间站上部署的气候传感器验证了气候模型,并提供了有关地球不断变化的气候环境的大量新信息,而空间站上的空间科学仪器则增进了我们对中子星和暗物质等现象的认识。空间站机组人员也是实验的重要组成部分,他们自愿作为测试对象,研究人类对微重力生活和工作的适应性。如果不继续进行这些长期的演示和人车联合系统实验,人类对太阳系的探索将是不可能的。
1 中国科学院高能物理研究所粒子天体物理重点实验室和实验物理研究部及计算中心,北京 100049 2 中国科学院大学,北京 100049 3 天府宇宙线研究中心,四川成都 610000 4 都柏林高等研究院,爱尔兰都柏林 2 号 Fitzwilliam Place 31 号 5 马克斯普朗克核物理研究所,德国海德堡 69029 信箱 103980 号 6 粒子探测与电子学国家重点实验室 7 中国科学技术大学,安徽合肥 230026 8 西南交通大学物质科学与技术学院、信息科学与技术学院,四川成都 610031 9 南京大学天文与空间科学学院,江苏南京 210023 10 广州大学天体物理中心,510006 广东广州,中国 11 河北师范大学,050024 河北石家庄,中国 12 中国科学院紫金山天文台暗物质与空间天文重点实验室 & 射电天文重点实验室,210023 江苏南京,中国