耐化学性是指材料在与化学物质接触期间和之后保持其颜色,光泽,尺寸和机械性能的能力。化学兼容性进一步详细介绍了材料与正在考虑的化学物质之间缺乏化学反应。tedlar®PVF膜具有极高的耐化学耐药性和与酸,碱,氧化剂,包括极性,非极性,非极性,芳香族,脂肪族,碳氢化合物,碳氢化合物和氯化溶剂的多种溶剂的兼容性,以及其他刺激性化学物质。即使在高浓度,延长曝光时间和高温下的极端条件下,Tedlar®膜也保留了其所有或大部分的原始特性和外观。实际上,在149°C以下的温度下,tedlar®膜没有已知的溶剂。
切片程序 • 使用不同的切片程序准备要打印的 3D 模型。这些是 Cura、PrusaSlicer、LycheeSlicer 和 ChiTuBox。 • 探索各种切片设置及其如何影响打印过程,例如层高、壁数、填充(密度、类型/图案)、曝光时间、打印方向、支撑结构(正常、树/有机)等。 • 理解并使用切片过程的步骤。 1. 将 3D 文件导入切片软件 2. 调整切片设置并定位 3D 模型 3. 通过将 3D 模型切片成层来生成刀具路径。 4. 预览切片层以确保准确性并识别任何潜在问题。 5. 以与 3D 打印机兼容的适当文件格式(例如 G 代码)导出切片模型。 6. 将切片文件传输到 3D 打印机进行打印。
SPARCS 拥有多项技术创新,可广泛适用于其他任务。有效载荷展示了“2D 掺杂”(即 delta 和超晶格掺杂)探测器和探测器集成金属介电滤波器在太空中的应用。该探测器技术提供的量子效率比 NASA 的 GALEX 探测器高出约 5 倍。此外,SPARCS 的有效载荷处理器提供动态曝光控制,自动调整曝光时间以避免耀斑饱和并时间分辨最强的恒星耀斑。简单的被动冷却系统将探测器温度保持在 238K 以下,以最大限度地减少暗电流。航天器总线提供小于 6 英寸的指向抖动,最大限度地减少平场误差、暗电流和读取噪声的影响。所有这些元素都使 CubeSat 平台内的天体物理科学具有竞争力。
尺寸(W X H X D)37.3 cm x 47.7 cm x 53.3 cm重量28 kg电源(功率消耗)100-240 V AC,50/60 Hz样品容器幻灯片,微型室,35毫米,35毫米,6,12,24,24,24,24,24,96 75 NA,1毫米WD系统放大倍率10.3x传感器和像素尺寸CMOS,7百万像素,冷却温度-25°C,低噪声,量子效率70%以上,像素尺寸:4.5 µm x 4.5 µm,最大曝光时间为60分钟的像素大小:2200×2200像素,4.5 µm x 4.5 µm像素像素大小最大视野:1.4 mm x 0.95 mm x 0.95 mm分辨率限制环境控制功能选项:舞台顶室,混合气体控制器
简而言之,该方法使用一组代表性软表面纺织品的1厘米直径盘或1厘米2个正方形(载体)。每个载体接收10 µL的微生物接种物(具有三部分的土壤负荷),沉积在每个载体的中心。允许接种物干燥,然后暴露于50 µL抗菌治疗中;对照载体接受等效的无害液体(例如磷酸盐缓冲盐水)。允许曝光时间经过;然后将液体中和添加到小瓶中,以停止抗菌作用。每个带有载体的小瓶是涡旋,串行稀释的,并且含量被过滤以恢复可行的微生物。基于未经处理的对照和处理过的载体的平均log 10密度值之间的差,计算了可行细菌中平均log 10减少(LR)。LR值用作产品有效性的度量。
图 3:PAN IPP 的平面内分辨率评估。(a) 定制 USAF-1951 光掩模的投影聚焦在液-液界面。(b) 使用 0.6 wt.% V-50 从 IPP 获得的目标 PAN 薄膜图像。黄色箭头表示 (c,d) 中表示的强度分布的线和方向。(cd) 第 3 组在 0.5、1.0 和 1.5 wt.% (c) V-50 和 (d) VA-044 的强度分布。分辨率极限对应于第一组,其中线条不再能从强度分布中分辨出来,黑线表示在光掩模的图像平面中获得的强度分布。(e) 分辨率极限定义为已识别组中的单个线宽和 (f) 印刷 PAN 薄膜的每个图像中的气泡数与光引发剂浓度和类型。标记和误差线表示在相同条件下获得的五种 PAN 薄膜的平均值和标准偏差。所有照片的曝光时间为 30 秒。
描述 Novagard RTV 800-630 是一种紫外/双固化有机硅灌封化合物。这种无腐蚀性、单组分有机硅在紫外光源下固化为柔软的橡胶状凝胶。 特性和优点 - 极快的紫外固化 - 单组分 - 无氧抑制 - 室温固化 - 无溶剂配方 - 无腐蚀性副产品 - 无粘性表面 紫外应用 所有实验室实验均使用在 125 和 300 WPI 下工作的汞蒸气灯进行。要获得无粘性表面,需要在 500 mW/cm 2 下曝光 0.30 秒,或在 245 mW/cm 2 下曝光 0.60 秒。与任何紫外固化系统一样,在较低强度的灯条件下需要更长的曝光时间。 可用性 请咨询 Novagard 销售代表以了解包装选项和容量要求。储存 Novagard ® RTV 800-630 可在原装未开封容器中,在 80 o F 或以下的温度下储存长达三个 (3) 个月。
金属增材制造的计算过程建模在最近引起了广泛的研究关注。许多过程模型的基础是 AM 过程中的瞬态热响应。由于 AM 中热条件的沉积尺度建模计算成本高昂,因此文献中通常采用空间和时间简化,例如模拟整个层或多个层的沉积,以及延长激光曝光时间。虽然这些简化有利于降低计算成本,但本文逐一报告了这些简化对温度历史准确性的影响。在本文中,首先根据空间和时间域中的假设,将现有文献中的简化分类到归一化简化空间中。随后,使用数值示例研究所有类型的简化,并与高保真参考模型进行比较。建立了每个简化所需的数值离散化,从而可以公平地比较计算时间。对不同建模简化方法是否适合捕捉热历史进行了整体分析,为建立热 AM 模型时简化方法的适用性提供了指导。关键词:增材制造、热建模、简化、激光粉末床熔合
简而言之,该方法使用一组代表性软表面纺织品的1厘米直径盘或1厘米2个正方形(载体)。每个载体接收10 µL的微生物接种物(具有三部分的土壤负荷),沉积在每个载体的中心。允许接种物干燥,然后暴露于50 µL抗菌治疗中;对照载体获得等效量的无害流体(例如增长培养基)。允许曝光时间经过;然后将液体中和添加到小瓶中,以停止抗菌作用。每个带有载体的小瓶是涡旋,连续稀释的,并将其镀到细胞上,以恢复可行的病毒颗粒。存在可行的病毒颗粒的存在为适用于测试系统(例如,细胞病变效应(CPE),直接荧光抗体(DFA)染色(DFA)染色,血凝等染色等)。基于未经处理的对照和处理过的载体的平均log 10密度值之间的差,计算生存病毒颗粒中的平均log 10减少(LR)。LR值用作产品有效性的度量。
我们讨论了超导体-绝缘体-超导体 (SIS) 结的材料加工极限,这些结的能隙足够高,可以实现 THz 异差混频器检测。这项工作的重点是器件结构,该结构具有 Nb 作为基层、由薄 Al 邻近层的等离子体氮化形成的隧道势垒以及 NbTiN 作为对电极材料。这些 SIS 结通常表现出 3.5 mV 的总间隙电压,对于电阻 - 面积乘积 RNA = 20 pm',亚间隙与正常状态电阻比 Rsg / RN = 15。开发该工艺的目的是将结集成到混频器天线结构中,该结构将 NbTili 用作接地平面和线路层。针对 Al 层等离子体氮化期间应用的条件,解决了 RNA 产品的运行间可重复性和控制。通过控制直流浮动电位、N 2 压力和曝光时间来研究铝的射频等离子体氮化。处理在接近室温下进行,以减少变量数量。金属膜层中的应力保持在低压缩范围内。最近的接收器结果将在本次研讨会上发表的另一项工作中讨论。[1]