摘要。本文改进了 Shor 攻击二元椭圆曲线所需的量子电路。我们提出了两种类型的量子点加法,同时考虑了量子比特数和电路深度。总之,我们提出了一种就地点加法,改进了 Banegas 等人在 CHES'21 中的工作,根据变体的不同,将量子比特数 - 深度乘积减少了 73% - 81% 以上。此外,我们通过使用额外的量子比特开发了一种非就地点加法。该方法实现了最低的电路深度,并将量子比特数 - 量子深度乘积提高了 92% 以上(单个步骤)。据我们所知,我们的工作在电路深度和量子比特数 - 深度乘积方面比所有以前的工作(包括 Banegas 等人的 CHES'21 论文、Putranto 等人的 IEEE Access'22 论文以及 Taguchi 和 Takayasu 的 CT-RSA'23 论文)都有所改进。结合实现,我们讨论了二元椭圆曲线密码的后量子安全性。在美国政府的 NIST 提出的 MAXDEPTH 度量下,我们工作中深度最大的量子电路为 2 24 ,明显低于 MAXDEPTH 极限 2 40 。对于门数 - 全深度乘积(一种估计量子攻击成本的度量,由 NIST 提出),我们工作中度为 571 的曲线的最高复杂度为 2 60(在经典安全性方面与 AES-256 相当),明显低于后量子安全 1 级阈值(2 156 量级)。
投票是民主的基石,需要确保安全,透明度和选民匿名的系统。传统投票方法通常面临诸如篡改和缺乏机密性之类的挑战,促使人们需要安全的数字解决方案。本文使用椭圆曲线密码学(ECC)提出了一个隐私的投票系统,以解决这些问题[1]。ECC是一种有效的加密技术,可提供较小的钥匙尺寸的强度安全性,使其非常适合可扩展系统。它确保了安全的沟通并保护选民身份[2]。将ECC与区块链技术整合在一起,进一步通过分散的信任和不可变化的存储提高了数据完整性和透明度,如所示。同构加密用于启用加密票的计算,以确保选民在Tallying期间的私密性[3]。通过将ECC,区块链和同质加密结合起来,拟议的系统解决了电子投票中的关键问题,例如数据操纵和双重投票,同时保持选民的保密性和可信度[4]。2。文学评论
• 1985 (published in 1987) Hendrik Lenstra Jr., Elliptic Curve Method (ECM) for integer factoring • 1985, Koblitz, Miller: Elliptic Curves over a finite field form a group suitable for Diffie–Hellman key exchange • 1985, Certicom: company owning patents on ECC • 2000 Elliptic curves in IEEE P1363 standard • 2000椭圆形曲线上的双线性配对•NSA Cipher Suite B,用于公钥加密的椭圆曲线•2014年:准poly-polynomial时间算法
序列必须彼此遇到,然后才能配对。基因组越复杂,即可用的序列越唯一,任何两个互补序列相互遇到并配对所需的时间就越长。给定溶液中相似的浓度,然后需要更复杂的物种才能达到COT1/2。
摘要 - 基于等效电路模型(ECM)估计开路电压(OCV)的所有电荷状态(SOC)估计算法,并使用SOC-OCV非线性关系将其转换为SOC。这些算法需要识别ECM参数和非线性SOC-OCV关系。在文献中,提出了各种技术来同时识别ECM参数。然而,SOC-OCV关系的同时同时鉴定仍然具有挑战性。本文提出了一种构建SOC-OCV关系的新技术,最终将其转换为单个参数估计问题。使用拟议的参数估计和SOC-OCV构建技术实施了Kalman过滤器,以估算电池中的SOC和相关状态。在数值模拟中,该算法证明它准确地估计了电池模型参数,并且SOC估计误差仍低于2%。我们还通过电池实验验证了所提出的算法。实验结果表明,SOC估计的误差保持在2.5%以内。
摘要:本文深入研究了用于比特币区块链中地址生成的SECP256K1椭圆曲线的复杂特征和安全属性。比特币区块链是一个分散的数字分类帐,记录了用比特币加密货币进行的所有交易。在这项工作中,描述了SECP256K1椭圆曲线及其参数以及使用随机数生成私钥和公共密钥的方法。虽然专用密钥允许签署交易来花费比特币,但相应的公钥和地址使其他人能够验证交易并将资金发送到区块链上的特定地址,以确保分散网络中的安全性,真实性和隐私性。讨论了对使用SECP256K1的使用来生成诸如蛮力攻击,扭曲攻击,故障攻击以及椭圆曲线实施中的侧渠道攻击之类的比特币地址。通过维护SECP256K1的安全性和完整性,我们可以确保加密操作(例如数字签名和关键交换)仍然不妥协。如果曲线的安全性受到了损害,恶意用户可能会从公共钥匙中衍生出私钥,从而导致未经授权的交易,双人支出或其他恶意活动。可以通过确保使用SECP256K1进行彻底的测试和验证以确保正确且安全的操作来增强实施的安全性。讨论了对区块链技术的重要攻击,例如51%的攻击,SYBIL攻击,双重支出攻击和智能合同漏洞。通过全面的探索,读者将了解为什么选择这种特定的椭圆曲线以用于比特币的加密协议中,从而强调了其在确保区块链生态系统的鲁棒性和完整性方面的作用。
对兽医重要性的病原体监测及其抗菌素耐药性剖面(SPAMR-VET)的一系列活动将填补现有的抗菌易感性测试的差距,从地层状和水生食物产生的动物中对细菌病原体进行了细菌病原体。此外,该项目将通过绘制项目参与者的基因组监测活动,开发共享和分析基因组监测数据的共享工具,并评估Metagenomics的潜在的Maneverenomics的潜在,从而,该项目将促进使用基因组方法来监视兽医病原体及其抗菌耐药。还将对动物种群中抗菌素耐药性监测的各种活动进行比较评估,包括对病原和指标细菌的监测,主动和被动监测,患病和健康的动物。该项目还将评估抗菌抗药性从养殖动物到周围环境的潜在传播,并确定陆地和水生野生动植物作为环境监测的潜在的潜力。项目目标
审查研究了对细胞内效应子进行定量评估的方法,以及受体对晚期糖基化最终产物(RAGE)的细胞反应,这是参与一系列生理和病理过程的重要跨膜受体。rage结合了晚期糖基化最终产物(年龄)和其他配体,这又激活了影响细胞反应(例如炎症,氧化应激和免疫反应)的各种下游信号传导途径。审查文章讨论了由愤怒激活的细胞内信号传导途径,然后在各种疾病中激活愤怒信号的差异激活。这最终将指导研究人员开发针对与愤怒激活相关的疾病的有效干预措施。此外,我们讨论了如何利用对下游信号传导的各种分子的PCR,Western印迹和微观检查,以监测,诊断和探索涉及具有独特后翻译后修饰的蛋白质的疾病。本评论文章强调了涉及愤怒的疾病检测和管理的分子方法进步的迫切需求。
MISO 于 2023 年更新了 VOLL 组件,利用了最新的经济和电力使用数据。基于这些值,MISO 建议将 VOLL 从 3,500 美元/兆瓦时提高到 10,000 美元/兆瓦时。该 VOLL 将继续用作市场价格上限和负荷削减事件期间的行政定价。该决定承认负荷削减将集中在住宅类,其 1 小时停电夏季 VOLL 为 4,337 美元/兆瓦时,但其他负荷类在此类事件期间不可避免地会被削减。只需刷新 2007 年的计算结果,即可获得更高的潜在 VOLL,即 13,640 美元/兆瓦时。此外,如果客户需求在所有负荷类中均匀减少,则 36,888 美元/兆瓦时的 VOLL 是合理的。然而,考虑到延长 VOLL 定价可能带来的财务影响,MISO 认为这些值过高。