尽管与近红外光通信中使用的光子器件相比,GaN microLED 器件的射频带宽相对较小,但它们能够缩小到 1 μ m 到 10 μ m 之间的非常小的间距,并且具有高亮度和在高温下工作的能力,这使它们成为短距离光通信的有趣器件。人工智能 (AI) 或高性能计算 (HPC) 等应用正在推动更高性能、更好能源效率和低延迟短距离互连的发展。事实上,据报道,15 AI 开发所需的硬件性能的扩展速度远远快于互连和内存数据速率。因此,芯片间或芯片内通信预计将成为 AI 技术进步的主要限制因素,这加强了人们对 GaN microLED 等新型短距离光互连的兴趣。我们介绍了 CEA-LETI 最近开展的工作,重点是开发短距离芯片到芯片光通信,如图 1 所示,使用 InGaN/GaN microLED 和微型光电二极管 (microPD)。这项工作利用了最初为微型显示器开发并适用于 200 毫米 ASIC 的外延、器件和集成工艺。在概述 microLED 在通信方面的预期优势并将其与替代技术进行比较后,我们将简要介绍一种集成工艺,该工艺旨在在控制 ASIC 上方组装密集的 microLED 矩阵。将重点介绍主要的性能指标,以评估
在“共享”水域。在对训练演习进行初步修改后,海军反潜作战部队寻求替代技术,以便在不打扰海洋哺乳动物的情况下进行水下战术训练。当这种特殊需求出现时,总部位于佛罗里达州杰克逊维尔的分析、设计与诊断公司 (AD&D) 看到了实现其声纳业务多元化的绝佳机会。“这些评估要求海军在训练场采取更多措施保护鲸鱼和海豚,”AD&D 总裁 Gary Donoher 说。“我们已经响应了多项关于海洋哺乳动物缓解的 SBIR [和 STTR],但第一阶段是在 2001 年。”AD&D 从事声音分析业务已有 20 年。“AD&D 的核心竞争力之一是了解世界海洋中的声音,”Donoher 说。“我们支持美国海军探测和分类潜艇和水面舰艇。”如今,该公司为海军提供被动技术,通过安装在海军舰艇上的声纳浮标和技术捕捉和分析海洋哺乳动物的活动。声纳浮标使用被动接收器和无线电发射器来记录和传输水下声音。接收到的数据一起提供了海洋哺乳动物(或水中任何物体)的位置。但 AD&D 并不总是对监听海洋哺乳动物感兴趣。根据 Donoher 的说法,在联邦法院裁定海军应继续“监测和缓解措施”以防止伤害之前
• 评估系统性能:评估当前 HRMIS 在系统利用率(基于审计线索的每日/每周平均用户和交易数量)、速度、可靠性和效率方面的总体性能。确定任何瓶颈或可以改进性能的领域。 • 审查用户体验:检查 HRMIS 的用户界面和总体用户体验。确定任何可用性问题或可以让系统对人力资源人员和员工更直观和更友好的领域。 • 评估数据管理:审查系统的数据管理功能,包括数据准确性、数据安全性和数据隐私。确定任何漏洞或可以加强数据管理实践的领域。 • 分析集成能力:评估系统与其他业务系统(如财务、工资单和企业资源规划系统)交互的能力。确定使用即将推出的服务总线和 API 功能改善系统间互操作性和数据共享的任何机会。 • 评估与机构目标的一致性:确定当前 HRMIS 与我们机构的战略目标、人力资源政策和行业最佳实践的一致性。确定系统可能需要更新或定制的领域,以更好地支持我们的目标。 • 探索创新机会:确定将新兴技术和趋势(如基于云的解决方案)融入人力资源管理的机会。评估系统是否已准备好采用替代技术以及它们可能为我们的政府机构带来的潜在好处。
能源计划是实现低碳高效能源供应的能源转型过程的核心。它们旨在为能源转型过程提供信息、指导和引导。例如,人们认为能源计划可以为引导转型提供见解 [1] ,在高度不确定的情况下指导决策 [2] ,或促进替代技术路径 [3] 。本文分析了能源计划如何帮助引导那些正在应对不确定和模糊的能源转型的参与者 [4] 。处于持续能源转型中的参与者需要在不了解其行动可能产生的影响的情况下做出决策,因此他们经常求助于知识生成,以减少不确定性、评估其选择或预测其行动的后果。虽然计划在科学和专业能源规划界都得到了广泛使用,但它们的使用方式并未受到太多关注。为了解决这一研究空白,本文采取了一种新颖的方法,研究能源计划如何为投资创新技术的参与者的感知过程提供信息。本文通过反思计划的实际用途,而不是假设其在不确定情况下的实用性,为现有的能源规划文献做出了贡献。这是通过案例研究实现的,该研究遵循了投资热能存储 (TES) 的过程,从将其概述为低碳能源系统的众多重要技术之一,到最终决定投资 TES。
根据Jasni Dolah等人在2012年发表的一项研究,使用自闭症谱商(ASQ),对马来西亚大学萨恩斯大学的本科生平均智力的成年人的自闭症症状水平进行了评估。ASQ包括一项在线调查以及一份问卷,其中包含Simon Baron-Cohen在2001年发布的50个李克特量表项目。必须一次选择一个选择。封闭框的响应范围从“绝对同意”到“绝对不同意”。使用SPSS统计软件和ANOVA进行估计。这项研究是由于全球和马来西亚的自闭症案件的急剧上升而进行的。问卷包括与该工具在识别ASD识别ASD的功效的问题,对替代方法如何帮助学习ASD的意识以及这些仪器是否是识别ASD的仪器。该仪器的目标包括找出每个年龄/种族组中哪些人的比例较低和高水平的ASD,分析ASQ评论,并建议诊断ASD的替代技术。根据这些发现,大多数受访者的自闭症症状的平均得分是基于ASQ确定的得分点。基于性别的分数区分了马来西亚的女性ASD患者。马来人比中国和其他部落更受影响。总而言之,社会必须更加了解ASD,并停止将这些迹象视为禁忌。相关材料的创造对于治疗ASD [7]至关重要。
热力学第二定律是物理学的基石,它通过一个函数——熵来表征热力学状态之间的可转换性。鉴于热力学的普遍适用性,量子信息理论中的一个基本问题是,是否可以制定一个类似的第二定律,用一个函数来表征资源在量子信息处理中的可转换性。2008 年,提出了一个有前途的公式,将资源可转换性与量子版本假设检验变体的最佳性能联系起来。这个公式的核心是广义量子斯坦引理,它旨在通过量子资源的度量——资源的正则化相对熵来表征这种最佳性能。如果被证明有效,广义量子斯坦引理将导致量子资源的第二定律,其中资源的正则化相对熵在热力学中扮演熵的角色。然而,在 2023 年,人们在原始证明中发现了一个逻辑漏洞,使人们对第二定律的这种公式化的可能性产生了怀疑。在这项工作中,我们通过开发替代技术来解决这个问题,从而在比原始分析更少的假设下成功证明广义量子斯坦引理。基于我们的证明,我们重新建立并扩展了量子资源理论的第二定律,该定律既适用于量子态的静态资源,也适用于由经典量子 (CQ) 通道表示的一类基本动态资源。这些结果解决了在热力学和量子信息理论之间架起类比桥梁的基本问题。
关于该计划:人们越来越重视通过绿色能源满足能源需求,这导致了太阳能和风能等可再生能源的显著发展。自 2014 年以来,太阳能的装机容量已从 2.6 吉瓦增加到 70.1 吉瓦,增长了约 30 倍,风能从 21 吉瓦增加到 42.6 吉瓦。印度政府有一个雄心勃勃的目标,即到 2026 年实现 100 吉瓦的太阳能容量,其中包括 40 吉瓦的屋顶太阳能。风能和太阳能发电的快速增长激励研究人员、投资者、政府和政策制定者寻找替代技术和商业模式来实现这一目标。发电和供应系统以电网连接配电系统和离网微电网的形式发展成为一种有前途的技术选择。该技术具有转换效率更高的优势,并且具有未来潜力,在整体主导组合中负载的成分不断增加。随着储能技术的发展及其成本效益的提高,配电级智能电网正在稳步发展,包括分布式发电、负载和储能系统。基于可再生能源发电的智能电网的不确定性可能会影响电力系统的运行、安全性、可靠性、负载平衡和其他运行参数。除此之外,电动汽车 (EV) 的大规模部署可能会对系统保护、控制和稳定的能源市场带来运营挑战。此外,人们对 LED 照明、变速驱动器、数字家电、数据中心和电信系统的兴趣日益浓厚。
bt棉花是一种有吸引力的替代技术,可保护棉花免受毛虫的影响,并使棉花养殖更可持续,经济和环保。它具有对凹凸不平的内置抗性,并且非常有效地控制着由凸起的产量损失在相当多的程度上。它会提高收益水平,并提高农民的利润率。尽管该技术赋予了各种收益的信用,但最终用户对其生物安全,道德,社会,健康,经济和环境的影响有些担忧。这些担忧预言,通常会在不久的将来对Ge Wole产生抵抗力,尤其是BT棉花。人民的态度,他们对技术和采用行为的意识在维持任何技术方面起着重要作用。牢记这一点,在泰米尔纳德邦的哥印拜陀和Perambalur地区随机选择的120个BT棉花种植者中进行了一项实证研究,以评估他们在BT棉花种植中的经验。大多数种植者对BT棉花种植的态度很高,并且希望将来种植BT棉花。他们有关BT棉花的主要信息来源是本地投入经销商。他们中的大多数人没有采用印度政府规定的难民技术,以避免boll虫对BT棉花的抵抗发展。他们认为,由于BT棉花的密集,将在不久的将来发生主要的社会,经济,环境,道德和生物安全的影响。
通过同时将阴离子输入血液和心室囊肿区域,可以定义两个扭曲的序列,其中一种是血液加大脑和一种脑脊液(CSF)加大脑的大脑,在大脑内有一个缓慢平衡的区域,其中两个成分相遇。看来,卤素(Br-和i-)在血液中具有更为明显和快速进入脑组织,并且随着血液浓度的增加,可以显着穿透第二个腔室。氯化物更强烈地在脉络丛中从血液到CSF(与I-或BR-相比)。氯化物应类似于Br-和I-通过细胞间管快速扩散回到血液中。但是,关于C1分布动力学的知识微不足道。尚未对氯化物分布,扩散和运输的动力学(例如36Cl-,38cl-和稳定的C1-)进行了充分研究(在两个隔室中),但与其他离子相比,C1-运动与其他离子相比更为快。理想情况下,当此类研究与Van Harreveld冻结替代技术相结合时,可以将形态学证据与大脑任何区域的氯化物空间的体积进行比较时,这两种措施应密切一致。trobabl氯化物在大脑中迅速通过运河(直径为1 100-150),在某种程度上,这种运河可能是氯化物或卤素perm选择性(如肌肉组织中)。脑组织内的氯化物浓度梯度(例如从脑皮质到心室壁)应小于其他离子的浓度梯度(例如硫酸盐)。
厘米级、稳健的 GNSS 辅助惯性后处理,用于无本地参考站的移动测绘 J. J. Hutton a、N. Gopaul a、X. Zhang a、J. Wang a、V. Menon a、D. Rieck b、A. Kipka b、F. Pastor b a Trimble Navigation Limited,85 Leek Cr.,Richmond Hill,Ontario,Canada L4B 3B3 – (jhutton、ngopaul、xzhang、jhwang、vmenon)@applanix.com b Trimble Navigation Limited,Haringstrasse 19,Hohenkirchen-Siegertsbrunn Munich,85635,德国 – (Daniel_Rieck、Adrian_Kipka、Fabian_Pastor)@trimble.com ICWG III/I 关键词:差分GNSS、传感器方向、移动测绘、GNSS 辅助惯性、地理配准、机载测绘、直接地理配准、PPP 摘要:近二十年来,移动测绘系统一直使用全球导航卫星系统 (GNSS) 进行地理配准,以测量位置并使用惯性传感器测量方向。为了实现厘米级的位置精度,使用了一种称为后处理载波相位差分 GNSS (DGNSS) 的技术。为了使此技术有效,到单个参考站的最大距离不应超过 20 公里,而当使用参考站网络时,到最近站的距离不应超过约 70 公里。这种设置本地参考站的需求限制了生产力并增加了成本,尤其是在测绘大面积或长线性特征(例如道路或管道)时。用于从 GNSS 进行高精度定位的 DGNSS 替代技术是