量子机学习模型与其经典同行相比,有可能提供加速和更好的预测精度。然而,这些量子算法与它们的经典算法一样,也已被证明也很容易受到输入扰动的影响,尤其是对于分类问题。这些可能是由于嘈杂的实现而引起的,也可以作为最坏的噪声类型的对抗性攻击。为了开发防御机制并更好地理解这些算法的可靠性,在存在自然噪声源或对抗性操纵的情况下了解其稳健性至关重要。从量子分类算法涉及的测量值是自然概率的,我们发现并形式化了二进制量子假设测试与可证明可证明可靠的量子分类之间的基本联系。此链接导致紧密的鲁棒性条件,该条件对分类器可以忍受的噪声量构成约束,而与噪声源是自然的还是对抗性的。基于此结果,我们开发了实用协议以最佳证明鲁棒性。最后,由于这是针对最坏情况类型的噪声类型的鲁棒条件,因此我们的结果自然扩展到已知噪声源的场景。因此,我们还提供了一个框架来研究量子分类方案的可靠性,超出了对抗性,最坏情况的噪声场景。
强化学习的实际应用中的主要障碍之一是模拟和实际真实环境之间的差异。因此,在模拟环境中训练的政策可能无法在现实世界中产生预期的行动,这是由于噪声,建模不准确和不同环境条件等因素。为了减轻此问题,强大的马尔可夫决策过程(RMDPS)框架集中于设计算法弹性,可弹性。在RMDP中,人们考虑了一个可能的过渡概率和奖励功能的家族,并选择了本集中最坏的案例过渡概率和奖励功能以进行策略优化。最近的研究表明,考虑策略的熵和差异可以捕获给定奖励功能的最坏情况。尽管引入了处理过渡概率的各种算法,但仍存在某些挑战。特别是,分布的支持可能是不一致的,在实际环境中未过渡的状态仍然可以分配非零过渡概率。在这项工作中,我们添加了有关软最佳策略的差异,并用KL差异术语替换了相对于名义环境的过渡概率,替换了最坏的案例过渡概率。可以解决RMDPS的挑战。
H ∞ 滤波器针对的是噪声过程统计数据不确定的情况,此时我们的目标是最小化最坏情况而不是估计误差的方差 [ 3 , 26 ]。该滤波器限制了将扰动映射到估计误差的传递函数的 H ∞ 范数。然而,在瞬态操作中,会失去所需的 H ∞ 性能,并且滤波器可能会发散,除非每次迭代中都有一些(通常是限制性的)正性条件成立。在集值估计中,扰动向量通过有界集(如椭球)建模 [ 4 , 22 ]。在该框架中,我们试图围绕与观测值和外生扰动椭球一致的状态估计构建最小椭球。然而,由此产生的稳健滤波器会忽略任何分布信息,因此倾向于过于保守。 [19] 首次研究了一种对更一般形式的(基于集合的)模型不确定性具有鲁棒性的滤波器。该滤波器以迭代方式最小化标准状态空间模型附近所有模型的最坏情况均方误差。虽然该滤波器在面对较大不确定性时表现良好,但在较小不确定性下可能过于保守。[25] 提出了一种广义卡尔曼滤波器,它可以解决这个缺点,在标准性能和最坏情况性能之间取得平衡。通过最小化矩生成函数而不是估计误差平方的均值,可以得到风险敏感的卡尔曼滤波器 [24]。这种风险敏感的卡尔曼滤波器等同于 [12] 中提出的分布鲁棒滤波器,它最小化标准分布周围的 Kullback-Leibler (KL) 球中所有联合状态-输出分布的最坏情况均方误差。 [27] 研究了更一般的 τ -散度球的扩展。
当前用于对噪声量子处理器进行基准测试的方法通常测量平均错误率或过程保真度。然而,容错量子误差校正的阈值是以最坏情况错误率(通过钻石范数定义)表示的,这可能与平均错误率相差几个数量级。解决这种差异的一种方法是使用随机编译 (RC) 等技术对量子门的物理实现进行随机化。在这项工作中,我们使用门集断层扫描对一组双量子位逻辑门进行精确表征,以研究超导量子处理器上的 RC。我们发现,在 RC 下,门错误可以通过随机泡利噪声模型准确描述,而没有相干误差,并且空间相关的相干误差和非马尔可夫误差受到强烈抑制。我们进一步表明,对于随机编译的门,平均错误率和最坏情况错误率相等,并且测量到我们的门集的最大最坏情况误差为 0.0197(3)。我们的结果表明,当且仅当门是通过调整噪声的随机化方法实现的,随机化基准是验证量子处理器的错误率是否低于容错阈值以及限制近期算法的失败率的可行途径。
摘要:时间属性是安全关键型实时系统 (RTS) 可靠性的关键要求。UML 和 MARTE 是标准化建模语言,被工业设计师广泛接受用于使用模型驱动工程 (MDE) 设计 RTS。然而,在系统生命周期的早期阶段对 UML-MARTE 模型进行形式化验证仍然是一个悬而未决的问题。在本文中 1 ,我们提出了一个针对 UML-MARTE 安全关键型 RTS 的时间属性验证框架。该框架依赖于从 UML 架构和行为模型到用时间 Petri 网 (TPN) 表示的可执行和可验证模型的属性驱动转换。同时,它将时间属性转换为一组属性模式,对应于 TPN 观察者。然后对生成的 TPN 执行基于观察者的模型检查方法。该验证框架可以评估时间属性,例如循环和缓冲区的上限、最佳/最坏情况响应时间、最佳/最坏情况执行时间、最佳/最坏情况遍历时间、可调度性和同步相关属性(同步、巧合、排除、优先、子发生、因果关系)。此外,它还可以验证一些行为属性,例如没有死锁或死分支。该框架通过一个代表性案例研究进行了说明。本文还提供了实验结果并评估了该方法的性能。
尽管成本高昂且耗时,但仍可在地面设施中评估功率 MOSFET (金属氧化物半导体场效应晶体管) 中重离子诱导的单粒子烧毁 (SEB) 风险。因此,很少有实验研究专门研究与描述离子诱导 SEB 现象相关的相关参数。在本文中,使用几种离子能量组合研究了低压功率 VDMOSFET (垂直双扩散 MOSFET) 中的重离子诱导 SEB。进行了自洽统计分析,以阐明电荷沉积与 SEB 触发之间的关系。将实验数据与文献中的功率 MOSFET 中 SEE (单粒子效应) 最坏情况预测模型进行了比较,首次支持其与 SEB 机制中最坏情况预测的相关性。
- 在最坏的情况下,在理想晶格中找到近似最短的向量。- 下一代公开加密的新NIST标准的基础。- 替代结构:近似GCD,NTRU,O(1)-Lank模块LWE