非局域性研究历来集中在爱因斯坦-波多尔斯基-罗森悖论和贝尔不等式的情景上。在这种所谓的贝尔情景中,单个源发射出成对的粒子,这些粒子分布在两方之间,双方在空间上分开的位置独立测量这些粒子,然后比较它们的统计数据。近年来,非局域性研究已经超越了贝尔情景,开始考虑网络情景中可能出现的相关性 [1]。网络具有多个独立源,这些源发射粒子,然后根据特定的网络架构在多个方之间分配。例如,最简单的网络称为双局域情景 [2,3],有两个独立源,每个源分配一对粒子;一个在 Alice 和 Bob 之间,另一个在 Bob 和 Charlie 之间。这与在最简单的纠缠交换形式中遇到的情景相同 [4]。众所周知,与贝尔情景相比,引入多个独立源使得网络中非局域性的技术分析更具挑战性。然而,网络也提供了新的概念见解。例如,这涉及量子力学中复数的使用[5-7],无需输入的设备独立认证[8],单光子的非局部性[9],测量依赖性的上限[10]和广义概率理论的检验[11]。人们已经开发出一些计算方法,主要基于膨胀的想法,从外部限制网络中局域[12]、量子[13,14]和后量子[15]相关性的集合。对网络非局部性的探索已经产生许多针对不同网络架构的非局部性标准,例如双局部场景[2,3,16]、链式场景[3,17,18]、星式场景[19,20]以及许多其他场景(参见例如[21-27])。一个特别神秘的网络是所谓的三角场景。它包含三个参与方,即 Alice、Bob 和 Charlie,以及三个源,每个源在参与方之间发射一对粒子(见图 1)。这个网络之所以特别有趣,是因为它是最简单的场景,其中每个参与方都通过共享源与其他参与方相连。它可以被认为是全连通图的最简单实例,其中顶点代表参与方,边代表源,每个源都发射彼此共享的独立粒子对。可以在三角中创建非局域性
最小噪声分数 (MNF) 变换 (Green 等,1988) 是一种由两个连续数据缩减操作组成的算法。第一个操作基于对数据中噪声的估计,该估计由相关矩阵表示。此变换通过方差来去相关并重新调整数据中的噪声。在此阶段,尚未考虑有关波段间噪声的信息。第二个操作考虑了原始相关性,并创建了一组包含原始数据集中所有波段方差加权信息的组件。该算法保留了特定的通道信息,因为所有原始波段都会对每个组件的权重做出贡献。通常,数据集中的大部分表面反射率变化都可以在前几个组件中得到解释,其余组件的方差主要由噪声贡献 (Boardman,1993)。还可以检查每个组件的权重值,指出对主要组件中包含的信息贡献最大的原始波段。然后使用主要成分将数据转换回其原始频谱空间,从而产生与提供的原始数据相同数量的转换通道。
抽象的镍合金在航空航天,海洋和防御部门中具有广泛的应用,因为它们在升高温度,出色的耐腐蚀性和蠕变破裂强度下保持高强度的能力。然而,这些不同的特性最终导致了较低的可加工性。在切割工具材料,冷却技术,涂料材料和涂料沉积技术方面的进步吸引了研究人员在使用纳米流体(NFMQL)下使用纳米流体(NFMQL)进行镍合金的可持续加工加工。本文介绍了有关使用NFMQL加工镍合金的全面文献综述,以适当关注各种研究人员的作品。最初,提出了纳米流体的制备和纳米颗粒的特征,例如大小,形状,纳米粒子和碱流体的类型。然后在NFMQL条件下使用最常用的工具讨论了使用不同纳米颗粒和基础液体的镍合金和基础流体的镍合金的全面审查。最后,总结了基于镍的超合金的热物理特性,挑战和未来范围。
摘要。本项目开发了一种新型的快速同步二进制计数方法,用于实用计数器,计数周期最小。同步二进制计数器在许多应用中都是必需的,因为它速度快,还可以支持较大的位宽。基本上,由于扇出量大和进位链长,早期计数器的计数率有限,尤其是在计数器尺寸不小的情况下。它采用单比特约翰逊计数器来降低整个硬件的复杂性,然后复制它以减少由大量扇出引起的传播延迟。在本文中,重新编程其中使用的时钟以用于以不同时钟速率运行的各种应用,并且由于重新编程时钟,延迟值会发生变化,临界值可能会因不同的速率而变化。计数器输出结果是针对各种位获得的,最高可达 64 位,因此该设计提供了各种时钟速率,面积和延迟各不相同。
最小完美哈希函数 (MPHF) 用于有效访问大型字典 (键值对集) 的值。发现构建 MPHF 的新算法是一个活跃的研究领域,尤其是从存储效率的角度来看。MPHF 的信息论极限为 1 ln 2 ≈ 1.44 位/键。当前最佳实用算法的范围是每个键 2 到 4 位。在本文中,我们提出了两种基于 SAT 的 MPHF 构造。我们的第一个构造产生的 MPHF 接近信息论极限。对于这种构造,当前最先进的 SAT 求解器可以处理字典包含多达 40 个元素的情况,从而优于现有的 (蛮力) 方法。我们的第二个构造使用 XOR-SAT 过滤器来实现一种实用方法,每个键的长期存储量约为 1.83 位。
摘要。在经典密码学中,单向函数 (OWF) 起着核心作用,它是 (几乎) 所有原语都隐含的最小原语。在量子密码学中,情况更加复杂,其中诚实方和对手可以使用量子计算和通信,并且众所周知,量子环境中的 OWF 类似物可能不是最小的。在这项工作中,我们询问 OWF 是否是后量子密码学中间环境中的最小值,其中协议是经典的,但它们将抵抗量子对手。我们表明,对于广泛的自然设置,如果原语 Q 意味着 OWF,那么它的 (均匀或非均匀安全的) 后量子类似物也是如此。特别是,我们表明,如果原语 Q 通过黑盒经典安全约简 R 暗示任何其他具有 2 消息安全游戏 (例如,OWF) 的原语 P,那么人们总是可以 (有效地) 将任何多项式大小的量子对手破解 P 变成多项式大小的量子对手破解 Q 。请注意,即使使用 Q 实现的 P 实现是任意非黑盒的,此结果仍然成立。我们还证明了当归约 R 预期其预言对手是确定性时,此结果的扩展,只要以下任一条件成立:(1) 对手只需以不可忽略的概率赢得 Q 的安全游戏(例如,Q 是抗碰撞哈希)或 (2) P 和 Q 中的任何一个都有“可证伪的”安全游戏(当 P 是 OWF 时就是这种情况)。当 Q 通过非黑盒安全归约暗示 OWF 时,或者当 P 使用比双消息游戏更复杂的安全游戏时,我们的工作没有回答我们的主要问题。
最小噪声分数 (MNF) 变换 (Green 等,1988) 是一种由两个连续数据缩减操作组成的算法。第一个操作基于对数据中噪声的估计,该估计由相关矩阵表示。此变换通过方差来去相关并重新调整数据中的噪声。在此阶段,尚未考虑有关波段间噪声的信息。第二个操作考虑了原始相关性,并创建了一组包含原始数据集中所有波段方差加权信息的组件。该算法保留了特定的通道信息,因为所有原始波段都会对每个组件的权重做出贡献。通常,数据集中的大部分表面反射率变化都可以在前几个组件中得到解释,其余组件的方差主要由噪声贡献 (Boardman,1993)。还可以检查每个组件的权重值,指出对主要组件中包含的信息贡献最大的原始波段。然后使用主要成分将数据转换回其原始频谱空间,从而产生与提供的原始数据相同数量的转换通道。
关于电动汽车的出版物。在EV计量学以及理解和应用EV生物学方面已取得了重要的进步。然而,由于EV命名法的挑战,与非详细细胞外颗粒的分离,表征和功能研究,由于基本生物学到临床应用的范围,障碍仍在实现从基本生物学到临床应用的潜力。为了解决这个迅速发展的领域中的挑战和机会,国际细胞外囊泡学会(ISEV)更新了其“最小的细胞外囊泡研究信息”,该学会于2014年首次发布,然后于2018年出版为Misev2014和Misev2018和Misev2018,并进行了评估。当前文档MISEV2023的目标是为研究人员提供可用方法的更新快照及其对电动汽车从多个来源的生产,分离和表征的优势和局限性,包括细胞培养,身体流体和实心组织。除了在电动汽车研究的基本原理中介绍最新的艺术状态外,该文档还涵盖了目前正在扩大该领域边界的先进技术和方法。MISEV2023还包括有关EV释放和摄取的新部分,以及对研究电动汽车的体内方法的简短讨论。汇编来自ISEV专家工作队和1000多个研究人员的反馈,该文档传达了电动汽车研究的现状,以促进稳健的科学发现并更快地推动该领域的前进。
抽象背景滑膜组织研究已在几个风湿病中心广泛发展,但是,在处理滑膜组织的方式中存在很大的差异,更具体地,在文献中报告了与活检程序,质量检查和实验结果有关的数据。这种异质性在这个迅速扩展的领域中阻碍了研究的进步。在这种情况下,在欧洲风湿病联盟联盟的保护下,我们旨在提出要考虑的观点(PTC),以了解滑膜组织研究中最小的报告要求。方法来自欧洲和美国10个国家的25名成员实际上会开会,以定义需要评估并提出研究问题以告知系统文献综述(SLR)的关键领域。在第二次虚拟会议上提出了结果,在该会议上制定并同意PTC。结果研究设计,活检程序,组织处理,组织质量控制和组织结果(成像,DNA/RNA分析和分解)被确定为滑膜组织研究质量的重要方面。SLR询问了四个数据库,检索了7654个摘要,其中包括26个手稿。制定了三个OPS和9个PTC,涵盖了以下领域:活检程序的描述,总体临床设计,患者特征,组织处理和加工,质量控制,组织病理学,转录学分析和单细胞技术。我们预计这些PTC将使该领域能够在未来几年内以强劲而透明的方式进步。结论这些PTC提供了有关如何报告涉及滑膜组织的研究的指导,以确保读者,审阅者和更广泛的科学界对结果进行更好的评估。