2.1 简介 3 2.2 解决方案 3 2.3 任务场景 4 3.1 技术概述 6 3.2 设计和优化 6 3.2.1 金属板合金的选择 7 3.2.2 金属板厚度的选择 7 3.2.3 充气压力的选择 7 3.2.4 二维金属板形状的选择 7 3.2.5 设计预测和优化的有限元应力分析方法 8 3.2.6 制造技术 8 3.2.7 充气技术 9 3.2.8 耐磨性 9 3.2.9 目标储存温度和压力的选择 9 3.2.10 风化层热性能验证 10 3.2.11 抗热梯度 12 3.2.12 埋藏深度的选择 12 3.3 测试方法 13 3.4 利益相关者13 3.5 风险管理 14 4.1 概述 16 4.2 验证测试 16 4.2.1 标准化充气压力 16 4.2.3 真空测试 18 4.2.4 低温储存 18 4.2.5 微陨石撞击与金属可修复性 19 4.2.7 焊接可靠性 20 4.2.8 强度测试 21 4.2.8 退火对碳钢的影响 21 5.1 未来发展路径 23 5.1.1 进一步的可靠性测试 23 5.1.2 大型模块测试的可扩展性 23 5.1.3 月球上焊接 23 5.1.4 Artemis 基地低温系统集成 23 5.1.5 地下模块的挖掘/安装 23 5.1.6 优化热管理低温学 24 5.1.7 NASA 组织 Artemis 基地资源的热管理 24 5.1.8 优化 METALS 几何结构以实现高效填充 24 5.1.9 传热实验 24 6.1 项目领导与管理 25
抽象的地球物理观察将提供有关行星和卫星内部结构的关键信息,并理解内部结构是这些物体的批量组成和热演化的强大结合。因此,地理观测是发现月球起源和演变的关键。在本文中,我们提出了一个自主月球地球物理实验包的开发,该实验包由一套仪器和带有标准化界面的中央站组成,可以安装在各种未来的月球任务上。通过修复仪器与中央站之间的接口,可以轻松地为不同的任务配置适当的实验包。我们在这里描述了一系列可能作为地球物理包装的地球物理仪器:地震计,磁力计,热流探针和激光反射器。这些仪器将提供与内部结构密切相关的月球的机械,热和大地测量参数。我们讨论了未来对月球的地球物理观察所需的功能,其中包括中央站的开发,而中央站通常会通过不同的有效载荷使用。
背景:自 2013 年以来,NASA JSC ARES 一直与 T STAR 和德克萨斯 A&M 大学 (TAMU) 合作,创建与政府、学术界和私营企业共同开发的原型仪器项目。NASA 为 T STAR 提供需求和资金,然后 T STAR 与 TAMU 教员合作,指导高年级本科生 Capstone 团队设计、测试和交付工作原型。这个 LIT 原型遵循了一系列之前的 T STAR 项目,这些项目评估并交付了月球表面 EVA 部署工具的概念,包括 SMART Stick、甘道夫权杖 [1] 和巫师权杖 [2]。用于表面科学仪器和样本收集的探测车原型已通过移动分析月球平台 (MALP) [3] 和 HELIX 重力测量概念 [4] 进行了演示。 24 财年 LIT 的资金由 NASA JSC 月球指挥与控制互操作性 (LUCCI) 项目提供,该项目专注于识别和标准化多个月球表面元素之间的接口,每个接口由具有独特硬件、软件、网络、电源和通信要求的供应商开发。
快速原型设计和测试是早期技术研发中常见的迭代设计的关键推动因素。在尘土飞扬的环境中进行测试对于准备低温磁耦合器进行月球操作至关重要。为了能够对尘土缓解概念进行早期和迭代测试,美国国家航空航天局 (NASA) 阿姆斯特朗飞行研究中心 (加利福尼亚州爱德华兹) 开发了一种低成本、低保真度的代表性月球风化层环境。基于对该测试装置的初步测试,类似的装置可能会引起大学和其他实体的兴趣,这些实体希望开发使用月球风化层模拟物安全测试相对小规模组件的能力。本文介绍了该月球风化层测试室的开发和初步测试的结果。还讨论了进一步的开发策略,以潜在地改进该装置。
因此,在整个太空探索史上,氟聚合物树脂被反复使用,例如用于涂覆关键电缆。氟聚合物树脂对于火星探索至关重要,更具体地说,对于勇气号和机遇号探测器的成功至关重要,因为它降低了部件故障的风险,延长了两个项目的任务寿命 2 。事实上,机遇号的任务持续了 14 年,打破了地外旅行的记录,行驶距离超过了 26 英里的马拉松。勇气号也超出了预期:虽然预计只能运行几个月,但它的任务持续了六年多。
为了实现人类在月球上的可持续、永久存在,NASA 必须提供安全避难所,以保护宇航员和设备免受辐射、极端高温和微流星体 (MM) 的伤害。规划和开发一个强大的安全避难所包括审查 NASA 在场地准备、挖掘、风化层转移、地面作业、自主监测和维护、先进制造和现场资源利用 (ISRU) 方面的活动,以确定实施安全避难所的最佳方法。这些 NASA 活动是作为 NASA 兰利进行的一项贸易研究的一部分进行审查的,旨在评估技术需求和估计的技术就绪水平 (TRL)。本文全面回顾了月球安全避难所的建立和维持运营中的作用和自主水平。
无线电/无线和卫星频率协调员、许可证持有者、制造商和监管机构。该协会于 1984 年应 FCC 的要求成立,为无线电信界制定有效使用和管理频谱的行业指南提供了一个论坛。• NSMA 在政府法规和行业之间建立了联系
对我们的行星系统的未来探索依赖于月球作为基地,并踏上了其他行星。因此,必须使用与该天体的高速数据连接。自由空间光学(FSO)通信将使连续宽带连接到地球。目前追求的概念包含数据中继卫星的绕着月球的卫星,每个卫星终端必须克服望远镜孔径限制的月球距离,并在光束指向和跟踪精确度上。我们提出了一个专用链接的概念,该链接来自安装在月球表面上的机器人望远镜站。我们研究了月球表面的这种FSO地面节点的概念架构,并在物理层的链路设计上聚焦。特别是,我们通过多个传输和接收供体增加了FSO通道容量。我们的发现鼓励在通常与空间任务一起使用的大链路距离的FSO通信中应用视线(LOS)多输入多输出(MIMO)技术,因为可以实现最大的MIMO容量。指导我们对链接几何形状的研究,这种连接在技术上似乎是可行的,该系统在相对较低的系统复杂性上与位于一个站点的接收器相对较低,而发射器相距仅几米。
1 执行摘要 我们的目标是开发 LETO(月球尘埃减缓静电 μ 纹理覆盖层),这是一种具有多种特性和功能的材料,专门用于月球环境的探索。本研究中实际生产的材料在真正的月球南极环境中性能不佳。然而,这项研究的结果可能为更大的研究工作提供支持,其中可以调整各个组件以允许真正融入其研究中。我们的设计表明,外层或“覆盖层”必须包含几个设计元素才能发挥作用。它应该具有具有纳米微尺度特征的表面结构,我们称之为微结构,它应该具有具有厘米级特征的预定折叠图案,我们称之为宏观结构,并且它应该连接到静电发生器,通过静电发生器可以促进表面充电程度。设计伴随着这三个组件的一些基础研究。本文将描述实现这三个目标的单独努力,并详细解释将它们结合在一起的额外挑战。我们对每个设计组件的可行性进行了多次观察。我们认为,LETO 的加入将有利于 Artemis 任务,并且可以以多种方式使用。
Moonshot描述里程碑6G下一代电信网络比5G更快,其下载速度更快,下载速度2028:数据量达到5G网络的容量BCI BCI与计算机连接到人类的人类认知 /思想2021:2021:在进步的情感AI越来越多地捕获人类的人类中的人类越来越多的人类的人类试验,并回应人类的情感2020: pervasive in everyday life Synthetic Biology Harnessing nature by redesigning organisms through genetic engineering to have new applications 2030: most people will have eaten, worn, or used synbio Immortality Breakthroughs in health/ biotech, anti-ageing drugs for radical life extension that ‘disrupts death' 2029: humans could become ‘immortal' and live forever Bionic Humans Technology that augments physical human capabilities e.g.exoskeletons, biohacking, implants 2021: world's first artificial cornea implanted eVTOL Electrical vertical take-off and landing vehicles that provides alternative mobility to road transport 2023: three eVTOL certified for commercial launch Wireless Electricity The use of magnetic fields or radio waves to transmit electricity wirelessly without cables 2025: 10 connected devices per person that needs charging Holograms Light imagery projections without headsets for digital interactions not requiring physical presence 2021: world's first hologram dining experience Metaverse Virtual worlds universe that interoperate with each other superseding the internet/physical world 2030s: spending more time in virtual world than real world Nextgen Batteries Next EV technologies after lithium-ion batteries such as solid state, sodium ion, vanadium flow etc 2020: one million mile battery pack breakthrough Oceantech Blue Economy where technology is deployed in the sea (ocean energy, precision fishing etc) 2030: global ocean economy equivalent to 2010 German GDP Green Mining Climate change is metals intensive requiring sustainable mining (sea, agro, wastewater, asteroid) 2024: commercial deep-sea mining set to start CCS Negative emissions technologies that captures and stores CO2 before release into the atmosphere 2040/50: $1 trillion in cumulative capex对CCS的投资