地球技术。美国近期的历史表明,我们的太空计划刺激了广泛的技术创新,这些创新在消费市场中得到了广泛的应用。太空技术以无数种方式彻底改变了我们的日常生活,并将继续这样做。来自太空的能源、太阳能和聚变燃料的进步、先进通信的有用材料、新资源、医学突破以及对人类潜力的更深入了解是我们可以期待的一些直接好处。太空探索计划提供了集中目标,以实现实用和有益的技术变革。
阿拉巴马州亨茨维尔 美国宇航局宣布,预计在 2025 年将人类送往小行星,在 2030 年代送往火星,这就需要在太空中准备供人类居住的栖息地。由于将建筑材料运送到太空的成本很高,因此需要利用现场材料来开发混凝土混合物。在本研究中,将尝试使用普通波特兰水泥和灰泥作为水泥基质。此外,由于火星和月球风化层可用性高,因此将用作骨料。对利用的骨料进行筛选并分成不同的尺寸,以找到混凝土性能的最佳骨料尺寸。研究结果证明,由于填料顺序得到改善,较小的风化层颗粒往往会产生强度更高的混凝土混合物。这项研究的结果表明,利用当地空间材料开发太空栖息地,生产经济型混凝土混合物向前迈出了一步。 关键词:纳米颗粒、波特兰水泥、火山灰掺合料、月球风化层、火星风化层
灰尘会通过多种方式损坏硬件。第一种是灰尘进入刚体机构元件之间的间隙。由于风化层的特性(将在下一节中进一步描述),这种侵入会增加运动副的摩擦,在某些情况下,甚至会完全堵塞它们。传统的方法是将接头密封起来,使其与尘土环境隔绝。然而,正如阿波罗的经验所表明的那样,月球尘埃的磨蚀特性往往会破坏密封 [1]。这意味着传统的密封件容易损坏,并且可能只是推迟了受保护的运动副中不可避免的摩擦增加。灰尘磨损也会对预期保持光滑的表面产生负面影响,例如宇航服的护目镜、太阳能电池板、热涂层、传感器表面等 [4]。热表面会因灰尘而退化,不仅是通过磨损,还通过灰尘堆积,因为它会改变热发射率和/或有效暴露表面 [2]。最后,导电元件可能因累积电荷的破坏性介电放电而受到严重损坏,包括敏感的微电子元件。正如所证明的,与灰尘有关的损坏机制差别很大,因此需要针对灰尘缓解挑战的定制解决方案。
Bharat的文化景观在几个世纪以来都引用了月球,塑造信仰,艺术,文学和庆祝活动的提及。月亮在传统的Bharat Luni-Solar日历的传统古代系统中是必不可少的一部分。Bhartiya年的月球月份称为Chandramāsa,从特定的Nakshatra(Lunar Mansion)中的满月出现。例如,Chaitra月以ChitrāNakshatra在此期间透露月球的命名。类似的逻辑在剩下的几个月中,例如Vaishakha,Jyeshtha等。即使是tithi的概念,意为农历日,也直接遵循太阳和月球之间的角度增加12度的时间。这个tithi概念是印度日历系统的月球月的核心。即使被称为paksh的两个月的两个两个星期都基于月球的衰落和打蜡周期,被称为Krishna Paksh和Shukla Paksh(Vajpayee,2022年)*。
•CCSD的选择和更新的月球通信•SFCG/ITU频率协调与治理•安全访问标准和网络管理•导航的时间/空间参考框架•频率共享和多个链接访问管理
I. 简介 月球车 (LRV)(更广为人知的名称是阿波罗“小车”)是阿波罗任务期间宇航员使用的探测车,用于支持月球表面探索活动。20 世纪 70 年代初,从阿波罗 15 号到阿波罗 17 号,共使用了三辆 LRV,它们对阿波罗最后几次任务的发现至关重要。宇航员步行只能行进不到一公里的总距离,而到阿波罗任务结束时,在阿波罗 17 号上,他们已经行进了近 36 公里。这三辆车都是非增压的,可容纳两名宇航员。不同版本的 LRV 在设计上几乎相同,只是每次新迭代都会有一些细微的增加。LRV 重约 210 公斤,在月球白天的使用寿命为 78 小时。这三辆 LRV 均由电池供电,不可充电。它们是根据美国宇航局与波音公司和德尔科公司签订的合同建造的,德尔科公司是波音公司的分包商 1 。
⎯ 完成电子束尘埃升空概念验证 (TRL 3) ⎯ 发布了科学定义团队 (SDT) 报告,题为“用于研究月球上尘埃-等离子体相互作用和尘埃修复技术的多用户设施的有效载荷建议” ⎯ 完成了对原型太阳能电池板试样的电子束尘埃升空效率的测试 ⎯ 在 JPL 测试室中安装了电子束源和样品旋转台装置 ⎯ 静电排斥/吸引力
月球顶点:莱纳伽玛棱镜探索。 David T. Blewett 1,*、Jasper Halekas 2、George C. Ho 1、Benjamin T. Greenhagen 1、Brian J. Anderson 1、Sarah K. Vines 1、Leonardo Regoli 1、Jörg-Micha Jahn 3、Peter Kollmann 1、Brett W. Denevi 1、Heather M. Meyer 1、Rachel L. Klima 1 、Joshua T. Cahill 1 、Lon L. Hood 4 、Sonia Tikoo 5 、邹小端 6 、Mark Wieczorek 7 、Myriam Lemelin 8 、Shahab Fatemi 9 、Ann L. Cox 1 、Scott A. Cooper 1 和 William F. Ames 1 。 1 约翰霍普金斯大学应用物理实验室,美国马里兰州劳雷尔 20723。2 爱荷华大学,爱荷华州爱荷华市。3 西南研究所,德克萨斯州圣安东尼奥。4 亚利桑那大学,亚利桑那州图森。5 斯坦福大学,加利福尼亚州斯坦福。6 行星科学研究所,亚利桑那州图森。7 法国蔚蓝海岸天文台。8 加拿大舍布鲁克大学。9 瑞典于默奥大学。(*david.blewett@jhuapl.edu)。
iac-20,b4,3,6,x59219 Olfar的自主任务计划:Lunar轨道上的卫星群,用于射电射线天文学的Sung-Hoon Mok A *,Jian Guo A,Jian Guo A,Eberhard Gill A,Eberhard Gill A,Raj Thilak Rajan Ba Aerospace Engifetry of Aerospace Engineering(lr)(LR),LR),DELLE(LR),deflue(lr),deflue(lr)。荷兰2629 HS,s.mok@tudelft.nl; j.guo@tudelft.nl; e.k.a.gill@tudelft.nl b Faculty of Electrical Engineering, Mathematics & Computer Science (EWI), Delft University of Technology, Mekelweg 4, Delft, The Netherlands 2628 CD , r.t.rajan@tudelft.nl * Corresponding Author Abstract Orbiting Low Frequency Array for Radio Astronomy (OLFAR) is a radio astronomy mission that has been studied since 2010 by several荷兰大学和研究机构。该任务旨在通过在30 MHz频带以下的超低波长状态下收集宇宙信号来产生天空图。一颗卫星群,其中包括10多个配备了被动天线的卫星,将部署在可以最小化射频干扰的太空中,例如,在月球的远处。到目前为止,已经投入了一些研究来设计空间部分,其中包括有效载荷和平台元素。但是,尚未详细设计地面部分,尤其是任务计划系统。在本文中,根据当前的卫星设计提出了任务计划问题后,提出了OLFAR的系统任务计划方法。关键字:任务规划,射电天文学,卫星群,月球轨道,地面部门,自治1。任务控制元素(MCE)是地面部分元素之一,其主要功能是任务计划和计划。简介地面细分市场对于任务成功以及太空领域和发射部门[1]起着重要作用。它旨在在有限的资源和限制下安排几个任务;最终,为特定的计划范围生成时间表。任务计划算法(或不久的算法)通常可以分为三类:确定性精确算法,确定性近似算法和非确定性近似算法[2]。首先,确定性精确算法提供了一个精确的最佳解决方案,但需要三个方面的计算时间最长。例如,蛮力搜索需要在获得全球最佳解决方案之前列举所有可能的候选者。其次,确定性近似算法提供了一个亚最佳解决方案,其计算负担明显较小。它通常被称为启发式算法[3]。有例如贪婪算法和本地搜索算法。第三,非确定性近似算法也提供了次优的解决方案,通常称为元启发式算法或基于人群的算法。遗传算法和粒子群优化是众所周知的非确定性近似算法。但是,应注意的是,算法的定义和分类在文献中通常会有所不同。
月球背面科学的潜力:由于月球背面不受地球无线电传输的影响,因此它是天文学家放置射电望远镜的理想位置。此次任务还包括在南极背面发射相当多的着陆器和探测车。例如,向南极-艾肯盆地发射样品返回任务将为有关月球内部的科学信息提供宝贵材料。 ITU-R RA.479-5 参考文献 [41] 中关于月球屏蔽区的内容指出:“300 MHz 至 2 GHz 之间的频率应保留给射电天文学”。ITU《无线电规则》第 22 条第 V 节 [39] 专门用于保护 SZM 中的射电天文学,要求与射电天文学进行协调,即使在 ITU《无线电规则》第 4.4 条框架内以不干扰为基础提出申请时也是如此。鉴于上述情况,我们在月球空间通信研究中必须考虑某些架构要求: