摘要 — 本文针对具有潜在光伏产消者的配电网,提出了一种新颖的两阶段博弈论住宅光伏 (PV) 板规划框架。一项创新贡献是将住宅光伏板位置分配模型与能源共享机制相结合,以增加光伏产消者的经济效益,同时促进住宅光伏板的合理安装。住宅光伏板规划决策的优化被制定为一个两阶段模型。在第一阶段,我们开发了一个基于 Stackelberg 博弈的随机双层能源共享模型,以确定具有不确定的光伏能量输出、负载需求和电价的光伏板的最佳尺寸。我们没有使用商业求解器直接解决所提出的双层能源共享问题,而是开发了一种基于有效下降搜索算法的解决方法,可以显着提高计算效率。在第二阶段,我们为所有光伏产消者提出了一个基于随机规划的住宅光伏板部署模型。该模型被制定为最优功率流 (OPF) 问题,以最小化有功功率损耗。最后,在IEEE 33节点和123节点测试系统上的仿真证明了所提方法的有效性。
本文提出了一种新型分层最优控制框架,用于支持多区域输电系统中的频率和电压,并集成电池储能系统 (BESS)。该设计基于来自 BESS 的协调有功和无功功率注入,而不是传统的基于同步发电机的控制,以快速及时地缓解电压和频率偏差。这个新想法的原理是使用两个分层方案,一个是物理的,一个是逻辑的。第一个方案的目标是优先从发生意外事件的区域安装的 BESS 注入功率,从而减少对邻近区域的动态干扰。在第二个方案中,每个方案中都纳入了聚合 BESS 的运行规则,从而提高了资产的安全性。所提出的方法利用了时间同步测量、特征系统实现算法 (ERA) 识别技术、最优线性二次高斯 (LQG) 控制器和新的聚合代理的优势,该聚合代理以分层和可扩展的方案协调 BESS 的功率注入,以精确调节现代输电网的频率和电压,提高其可靠性和稳定性。使用模拟场景证明了该提案的可行性和稳健性,该场景具有显著的负载变化和三相、三周期故障,改进的 Kundur 系统具有四个互连区域,可在不到 450 毫秒的时间内缓解频率和电压突发事件。
NERC 和区域实体继续分析涉及太阳能光伏 (PV) 资源大规模减少的干扰,以识别任何系统性可靠性问题,支持受影响的设施制定缓解措施,并与业界分享关键发现和建议,以提高认识和采取行动(见附录 A)。太阳能光伏资源的持续大规模减少继续对 BPS 的可靠性构成显著风险,尤其是当与 BPS 上其他发电资源的额外损失以及配电系统总体损失相结合时。本报告包含 ERO 对 2021 年 6 月至 8 月期间在加州独立系统运营商 (CAISO) 覆盖范围内发生的四起 BPS 干扰以及太阳能光伏输出大规模减少的分析。根据 NERC 事件分析流程 1,每个干扰都被归类为 1i 类事件,涉及南加州地区(特别是在太阳能光伏和风能资源渗透率高的地区)太阳能光伏资源的有功功率输出大规模减少。其中两个事件还涉及同步发电资源跳闸,三个事件涉及一定程度的分布式能源资源 (DER) 跳闸或减少。所有初始故障通常都通过适当的保护系统操作清除。表 ES.1 概述了 NERC 和 WECC 分析的四种干扰。
摘要:全球可再生能源发电整合的增加给能源系统带来了一些挑战。能源系统需要按照电网规范进行监管,以确保电网稳定和可再生能源利用效率。主动侧的主要问题可能是由于发电量过大或发电量不受监管,例如部分阴天。负载侧的主要问题可能是由于能源需求过大或不受监管或非线性负载导致能源网络的电能质量下降。本研究侧重于发电侧的有功功率控制。在本研究中,研究和分析了超级电容器在混合存储系统中使用的好处。本研究提出了一种混合系统,其中光伏供电并将能量存储在电池和超级电容器中,以解决两个方面的主要问题。超级电容器模型、光伏模型和所提出的混合系统是在 MATLAB/Simulink 中设计的,额定功率为 6 kW。此外,还提出了一种新的拓扑结构,以增加被动存储系统中超级电容器的能量存储。该拓扑旨在将瞬时峰值电流能量暂时存储在超级电容器中。该拓扑的主要优点是超级电容器在两侧实现电压稳定,并限制电池负载,这直接延长了电池寿命并降低了系统成本。研究了该拓扑的仿真结果。
摘要 - 未来几年,由于可再生能源 (RES) 份额的增加,电力系统将面临电力频率不稳定的问题。RES 通过电力电子转换器集成到电力系统中。RES 的运行和控制与传统能源截然不同。本文重点研究了 RES 份额上升对电力系统频率稳定性的影响及其可能的解决方案。在发生干扰时,RES 不会参与频率调节过程。尽管如此,它们仍会因输入能量的间歇性而对电力系统产生干扰。RES 没有额外的有功功率用于频率调节,因为它们已经在最大功率点运行。这些基于电力电子的发电机不像传统发电机那样具有惯性。无惯性系统会对频率变化率 (RoCoF) 和频率最低点产生不利影响。这在具有不同场景的 IEEE 9 总线系统上得到了证明。根据该分析,RES 应在干扰期间提供惯性响应。本文提出的改进虚拟惯性控制 (M-VIC) 技术通过使用外部储能系统 (ESS) 来模拟传统发电机的惯性。在 M-VIC 中,惯性响应通过控制 ESS 提供的功率的速率和持续时间来复制。所提出的技术可以更有效地降低频率最低点和 RoCoF,同时更好地利用 ESS。为了证明这一点,在 MATLAB R2019a 中模拟了 PV 集成单区域电力系统模型。
灵活性是促进配电网中可再生能源 (RES) 变化的最重要解决方案之一。据预测,电动汽车 (EV) 可以在配电网中发挥有效作用。因此,本文提出了停车场电动汽车电池 (EVPL) 的多目标调度,以提高智能配电网 (SDN) 基于存储的灵活性。所提出的公式将能源成本和电压偏差函数最小化,并将系统灵活性 (SF) 最大化为多目标函数,这些函数将根据交流负载流、RES 和 EV 约束以及灵活性和操作指标的允许限度进行优化。结果模型为非线性规划 (NLP) 模型。因此,获得了原始问题的等效线性规划 (LP) 公式,以实现全局最优结果。随机规划方法用于对负载、RES 的有功发电、能源价格和 EV 参数的不确定性进行建模。灵活的电源管理被制定为所提出的多目标框架的目标函数之一,该框架使用 ε 约束方法求解,由模糊决策器得出最佳折衷解决方案。在 GAMS 软件环境中使用 33 总线径向测试配电网络对所提出的框架进行了测试,以评估电动汽车在改善灵活性指标方面的能力。根据数值结果,可以观察到,所提出的具有电动汽车最佳能量管理的方案能够为 SDN 获得高度灵活性。它还可以减少网络运行中的能量损失并提供相当平滑的电压曲线。
1. 引言 目前,电能存储系统 (EESS) 被广泛用于解决电力工业的各种问题。近几十年来,储能技术的密集发展导致了具有特性 (功率、能量强度、效率系数、速度) 的 EESS 的诞生,这些特性 (功率、能量强度、效率系数、速度) 使项目能够以技术和经济效率实施。2017 年,俄罗斯联邦能源部批准了《俄罗斯联邦电力存储系统市场发展构想》[1]。此外,能源计划还指出了在俄罗斯联邦能源领域引入储能系统的具体任务,该计划是国家技术倡议的长期综合计划的一部分,旨在到 2035 年形成全新的市场并为俄罗斯在全球技术领导地位创造条件 [2]。现代快速 EESS 是一种全新的能源电力设备,旨在与电力系统进行受控的能量交换,以组织所需的模式或控制动态过程。EESS 能够根据任何给定的算法几乎立即控制有功功率平衡。根据给定的任务,EESS 可用作无功功率补偿装置、高次谐波有源滤波器以及三相网络不对称补偿手段。由于 EESS 技术的新颖性,其在俄罗斯电力工业实践中的开发和实施始于相对较小的额定功率和能量强度。俄罗斯联邦的自主能源系统中有许多 EESS 项目可供实施,这些项目具有较高的经济和技术效率。受控能量交换过程中的功率变化速度由 EESS 的功能目的决定。目前最相关的储能设备类型是:锂离子电池和超级电容器。第一种类型对于相对较慢的过程最有效,而第二种类型对于较慢的过程最有效。
摘要:规划可再生能源和电池存储系统的最佳运行的主要问题是必须考虑覆盖整个观察期的数据量。如果观察期为一年,则考虑特征日或平均数据(每日、每周或每月平均值)以减少数据量。由于输入数据的平均值与实际值不同,最好使用年度级别的每小时或 15 分钟数据。该研究提出了一个解决可再生能源和电池存储系统优化分配和运行问题的框架。所提出的方法同时解决了考虑年度级别的每小时数据的优化分配和能源管理问题。提出了基于模糊推理的系统来调度电池存储系统和可再生能源的最佳配置。开发的模糊推理系统管理光伏和风力发电系统的功率因数、沼气厂的功率因数和输出以及电池存储系统的运行状态。所提出的方法同时找到了能源管理系统的最优参数以及可再生能源和电池存储系统的最优分配和运行。所开发的方法基于稳态功率流的计算。所提出的方法将在设计阶段用于安装各种可再生能源和电池存储系统。此外,该方法还旨在用于在稳态运行期间最优地控制能源的功率输出和储能系统的运行,以便以最小的年有功电能损耗运行配电网。所开发的方法应用于具有 37 个节点的测试配电系统 IEEE。与没有可再生能源和电池存储系统的基准情况相比,测试配电系统的年能源损耗减少了约 80%。
摘要:本研究提出了一种适用于消费者住宅区的混合交流/直流微电网,该微电网采用可再生能源,以满足需求。目前,发电和消费经历了重大转变。其中一个趋势是将微电网整合到配电网中,其特点是可再生能源资源的高渗透率以及并联运行。可以采用传统的下垂控制来获得混合交流/直流微电网并联逆变器之间准确的稳态平均有功功率分配。假设具有相同下垂增益的相同逆变器会有相似的瞬态平均功率响应,并且单元之间不会有环流。然而,瞬时功率可能会受到不同线路阻抗的很大影响,从而导致逆变器之间流动的环流功率发生变化,尤其是在负载变化等意外干扰期间。如果该功率被逆变器吸收,则可能导致直流母线电压突然升高并使逆变器跳闸,进而导致整个混合微电网的性能下降。当混合发电机充当单向电源时,问题将进一步恶化。在这项研究工作中,我们提出了一种适用于混合微电网的新型分布式协调控制,该系统可应用于包括可变负载和混合能源的并网模式和孤岛模式。此外,为了选择最有效的控制器方案,设计了参与因子分析以约束直流母线电压并降低循环功率。此外,对于光伏电站和风力涡轮机,都使用了最大功率点跟踪 (MPPT) 技术,以便在环境条件存在差异时从混合电力系统中提取最大功率。最后,通过模拟结果确认了引入的混合微电网策略在不同模式下的可行性和有效性。
摘要:本研究提出了一种适用于消费者住宅区的混合交流/直流微电网,该微电网采用可再生能源,以满足需求。目前,发电和消费经历了重大转变。其中一个趋势是将微电网整合到配电网中,其特点是可再生能源资源的高渗透率以及并联运行。可以采用传统的下垂控制,以便在混合交流/直流微电网的并联逆变器之间获得准确的稳态平均有功功率分配。假设具有相同下垂增益的相同逆变器会有相似的瞬态平均功率响应,并且单元之间不会有循环电流流动。然而,瞬时功率可能会受到不同线路阻抗的很大影响,从而导致逆变器之间流动的循环功率发生变化,尤其是在负载变化等意外干扰期间。如果逆变器吸收了这种功率,可能会导致直流链路电压突然升高并跳闸,进而导致整个混合微电网的性能下降。当混合发电机充当单向电源时,问题会进一步恶化。在本研究工作中,我们提出了一种适用于混合微电网的新型分布式协调控制,该控制可应用于包括可变负载和混合能源的并网和孤岛模式。此外,为了选择最有效的控制器方案,设计了参与因子分析来约束直流母线电压并降低循环功率。此外,对于光伏电站和风力涡轮机,当环境条件存在差异时,最大功率点跟踪 (MPPT) 技术已被用于从混合电力系统中提取最大功率。最后,通过仿真结果证实了引入的混合微电网策略在不同模式下的可行性和有效性。