摘要。带有备用电池储能系统 (BESS) 的太阳能光伏 (PV) 系统可缓解电力系统相关问题,包括不断增加的负载需求、功率损耗、电压偏差以及随着电动汽车 (EV) 的整合在充电时增加负载而需要升级电力系统。本文研究了带有 PV/BESS 供电的电动汽车充电站 (CS) 的 IEEE-69 总线径向配电系统 (RDS) 的电压、功率损耗和负载能力等系统参数的改进。RDS 根据电动汽车总数、电动汽车充电时间和可用的 CS 服务时间分为不同的区域。每个区域分配一个 CS。制定了一种能源管理策略,根据电价的使用时间引导 CS、PV 板、BESS 和公用电网之间的电力流动。允许 BESS 在高峰时段将存储的多余能量出售给公用电网。采用基于多课程教学学习的多目标优化 (MCTLBO) 来优化 PV/BESS 系统的规模和每个区域中 CS 的位置,以最小化年度 CS 运行成本和系统有功功率损耗。结果验证了最佳 PV/BESS 为 CS 供电的适当功能,从而提高了系统的技术经济性。
NERC 可靠性标准中使用的新术语或修改术语本节包括拟议标准中使用的所有新术语或修改术语,这些术语将在获得适用监管机构批准后纳入《NERC 可靠性标准中使用的术语表》。拟议标准中使用的已定义且未修改的术语可在《NERC 可靠性标准中使用的术语表》中找到。下列新术语或修改术语将与拟议标准一起提交批准。董事会通过后,本节将被删除。术语:术语“基于逆变器的资源 (IBR)”是指根据 2020-06 发电机模型和数据验证项目正在制定的拟议定义。截至本文发布时,基于逆变器的资源的拟议定义是:基于逆变器的资源 (IBR):由能够通过电力电子接口(例如逆变器或转换器)输出有功功率的单个设备组成的工厂/设施,这些设备在与电力系统的公共互连点作为单一资源一起运行。IBR 包括但不限于具有太阳能光伏 (PV)、3 型和 4 型风能、电池储能系统 (BESS) 和燃料电池设备的工厂/设施。
目前,俄罗斯的储能技术已达到电力系统中普遍实际应用的水平。在各种类型的电力系统中实施储能系统(ESS)是俄罗斯电力工业发展中最重要的趋势之一。高速率储能系统可以比传统方法更有效地解决一系列复杂问题[1-5]。储能系统是一种多功能设备,能够调节有功和无功功率、频率,执行有源滤波高次谐波和补偿三相电压不对称的功能。如今,储能系统应用的最大技术和经济效果首先体现在分布式发电对象、智能电网和微电网(包括使用可再生能源的电网)以及石油和天然气部门的离网发电厂。上述对象的发电主要由柴油机、燃气轮机和燃气发动机组产生。燃气发电机 (GEG) 和柴油发电机组 (DGU) 在结构上具有很高的可靠性,这使得它们能够使用廉价的气体燃料(天然气、丙烷、丁烷、伴生气等),这些燃料通常在石油和天然气生产地很丰富。同时,与 DGU 不同,GEG 具有许多特点 [6]:- 当额定功率突然激增/下降 10-20% 时,GEG 会被技术保护系统关闭;
大规模储能能力正逐渐被纳入大容量电力系统,尤其是在可再生能源发电应用中,以平衡有功功率并保持系统安全。本文提出了一种集成直流侧电池储能系统 (BESS) 的安全系统配置,以最大限度地减少输出功率波动,获得高运行效率,并促进故障穿越,适用于单向可再生能源发电系统(从可再生能源向电网传输电力)。该系统利用强大的二极管单元 (DU) 保护接收端设备免受直流故障的影响。此外,接收端的 BESS 和半桥模块化多电平转换器 (MMC) 可以安全灵活地运行,以实现稳定和高质量的电力传输,无论是在电源间歇性还是直流链路故障情况下。根据 BESS 的大小,当接收端电网发生故障时,可以减少源系统功率波动(由接收端 BESS 吸收)。介绍了所提出系统的拓扑配置和控制设计。仿真结果表明,所提出的系统在直流和交流故障情况下均有效,并突出了功率波动消除功能。研究了接收端运行损耗,表明该系统效率高。此外,还阐述了所提出的系统的关键系统实施注意事项。
摘要:监管委员会正在推广封闭式配电系统 (CDS),它不同于传统的公共接入网络,可以由能源社区 (EC) 拥有和管理。CDS 中包含本地可再生能源潜力和充足的存储设备计划,允许 EC 成员之间进行合作,以降低运营支出 (OPEX),提供相对于公共监管网络和电力市场提供的电价具有内部竞争力的电价。CDS 运营商可以承担新的角色,即发电和存储资产的集中能源调度员,以最大限度地提高 EC 成员的利润。本文提出了一种创新的最佳有功和无功功率调度模型,以实现社区福利最大化。该提案与现有的公共接入网络上基于社会福利的调度之间的一个关键区别是排除了外部批发电力市场的利润。所提出方法的重点是最大限度地提高所有社区成员的福利。采用基于单一边界的集体 EC 的薪酬框架,考虑基于位置边际定价 (CDS-LMP) 的成员之间的协议。案例研究的结果显示,欧盟委员会对 CDS、可再生能源和存储的投资运营支出减少了 50%,回收期为 6 年。
Gayatri Vidya Parishad工程学院(GVPCE)由高级教育信托基金会(Gayatri Vidya Parishad)于1996年成立,以促进技术教育。GVPCE(a)提供10 B.Tech。,5 M.Tech计划和MCA,年度摄入量为1260。学院获得了NAAC的认可,其“ A + +”等级。该研究所获得了卢比的资金。在技术教育质量改进计划(TEQIP)下的5千万,印度政府MHRD的S.C-1.2。 新德里科学技术系批准了科学与工业研究中心(SIRC)支持研究活动。 UGC在2009年授予该大学的自治权。 学院采用了2013-14学年所有计划的基于结果的教育方法。 大学获得了卢比。 资助组织的12千万 朝45个研发项目。 研究和咨询项目,专门的教职员工,设备齐全的实验室,良好的基础设施和有功的学生是该机构的主要优势。 该研究所鼓励行业和学术界之间的合作学习,以此来加强其实用和现实世界经验的课程。 自1996年Gayatri Vidya Parishad工程学院成立以来,机械工程系一直在运作,最初的入学量为60名学生,现在已经增加到120名。。在技术教育质量改进计划(TEQIP)下的5千万,印度政府MHRD的S.C-1.2。新德里科学技术系批准了科学与工业研究中心(SIRC)支持研究活动。UGC在2009年授予该大学的自治权。学院采用了2013-14学年所有计划的基于结果的教育方法。大学获得了卢比。资助组织的12千万朝45个研发项目。研究和咨询项目,专门的教职员工,设备齐全的实验室,良好的基础设施和有功的学生是该机构的主要优势。该研究所鼓励行业和学术界之间的合作学习,以此来加强其实用和现实世界经验的课程。自1996年Gayatri Vidya Parishad工程学院成立以来,机械工程系一直在运作,最初的入学量为60名学生,现在已经增加到120名。该系拥有一支由高素质的教职员工组成的团队,其中许多人拥有印度和国外的IIT,NIT和大学等著名机构的博士学位。2020年,该部门启动了B.技术机械工程。(机器人)计划,摄入60名学生。此外,它还提供了M.技术计划,以12。该部门已获得了几个价值2400万卢比的研发和咨询项目,并在著名的国家和国际期刊和会议上发表了246篇论文。它拥有14项专利,并授予7项,4项已发表和3份提交。全国著名的出版商出版了几本教师的书籍。该部已获得NBA五次认可。该部门还设有一个机械状况监测中心,为高振动问题提供了解决方案。此外,它配备了CNC加工和高级机器人实验室。朝着技能开发的情况下,该部门与APSSDC T-SDI,Siemens和Dassault Labs合作,总价值为2千万卢比。
1 简介 ................................................................................................................ 4 2 输出功率 .............................................................................................................. 5 2.1 载波输出功率 .............................................................................................. 5 2.1.1 测试方法和设置 ...................................................................................... 5 2.1.2 测量校准 ............................................................................................. 6 2.2 载波扫描 ............................................................................................. 7 3 杂散发射 ...................................................................................................... 10 3.1 谐波输出功率 ............................................................................................. 10 3.1.1 测试方法和设置 ...................................................................................... 11 3.1.2 测量精度 ............................................................................................. 12 3.2 RX 本振泄漏 ............................................................................................. 12 3.2.1 测试方法和设置 ...................................................................................... 13 4 频率精度 ............................................................................................................. 15 4.1 测试方法和设置 ............................................................................................. 15 5 调制带宽 ............................................................................................................. 18 5.1 调制带宽理论 ................................................................................ 18 5.2 测试方法和设置 .................................................................................. 22 6 接收器灵敏度 .............................................................................................. 24 6.1 接收器灵敏度理论 .............................................................................. 24 6.1.1 误码率 ...................................................................................... 25 6.1.2 灵敏度精度 ...................................................................................... 25 6.1.3 灵敏度测量结果可以告诉您什么?................................... 27 6.2 测试方法和配置................................................................................ 28 6.2.1 测试设置.............................................................................................. 28 6.2.2 测量校准.............................................................................................. 30 6.2.3 低成本设置.............................................................................................. 30 7 接收机选择性................................................................................................. 32 7.1 理论...................................................................................................... 32 7.2 测试方法和配置...................................................................................... 33 7.2.1 测试设置............................................................................................. 33 7.2.2 测量校准............................................................................................. 35 7.3 干扰类型............................................................................................. 35 8 电流消耗............................................................................................. 36 8.1 静态和平均电流消耗............................................................................. 36 8.2 动态电流消耗............................................................................................. 37 8.2.1 测试方法和硬件设置有功电流消耗..................................................... 37 8.3 计算平均电流消耗................................................................................ 40 9 术语表................................................................................................ 41
一般 大容量电力系统和大容量电力系统有什么区别? NERC 将大容量电力系统 (BPS) 定义为运行互连电能传输网络(或其任何部分)所需的设施和控制系统;以及维持传输系统可靠性所需的发电设施的电能。该术语不包括用于本地电能分配的设施。 NERC 的术语表中将大容量电力系统 (BES) 定义为在 100 kV 或更高电压下运行的所有传输元件以及在 100 kV 或更高电压下连接的有功功率和无功功率资源。用于本地电能分配的设施不包含在该术语中。影响 BPS 可靠性的 BES 设施必须符合 NERC 的强制性可靠性标准。 配电系统是指将电力从输电系统输送到最终用户的系统,不受 NERC 监管,并且受州、省或当地公用事业监管机构的管辖,但配电系统上的低频减载和低电压减载继电器除外。 NERC 是何时成立的?成立的原因是什么?NERC 成立于 1968 年,由电力行业代表创立,旨在制定和促进自愿遵守规则和协议,确保北美大容量电力传输系统的可靠运行。NERC 如何定义可靠性?NERC 从两个基本和功能方面定义互连 BPS 的可靠性:
由乳腺癌倡导社区领导的强大基层努力的导致国会指导的医学研究计划,国会为乳腺癌研究提供了资金,并创建了CDMRP。这在公众,国会和军队中建立了独特的伙伴关系。从那以后,CDMRP增长到30多个目标计划,并在92财年至22财年之间获得了超过194亿美元的拨款。国会将CDMRP的资金添加到国防部预算中,以支持并为肌萎缩性侧向硬化研究计划等单个计划提供指导。应用程序审查过程CDMRP使用两层审核过程进行申请评估,这对于确保每个研究计划的投资组合不仅反映了最有功的科学,而且还反映了最符合计划目标的研究。评估的第一层是对应用的科学同行评审,该评估是根据确定其科学优点的既定标准来衡量的。第二层是由程序化面板进行的程序评论,该小组由主要的科学家,临床医生,ALS患者和拥护者组成。在这一层中,程序化面板比较了应用程序,并建议基于同行评审,潜在影响,投资组合平衡以及与整体计划目标相关的科学价值的资金。
通讯作者 *Bilal Naji Alhasnawi 巴士拉大学电气工程系,巴士拉,伊拉克 电子邮件:bilalnaji11@yahoo.com 摘要 随着负载的增加,混合交直流微电网在电力系统中越来越受欢迎。本研究提出,在消费者住宅中采用一些可再生能源(如太阳能、风能)构建混合交直流微电网以满足需求。电力生产和消费正在发生重大转变。趋势之一是将微电网整合到可再生能源渗透率高的配电网中。本文提出了一种针对混合微电网的新型分布式协调控制,该系统可应用于混合能源和可变负载的并网模式和孤岛模式。所提出的系统允许分布式能源协调运行,以在需要时提供必要的有功功率和附加服务。此外,最大功率点跟踪技术也应用于光伏电站和风力涡轮机,以便在环境条件变化时从混合电力系统中提取最大功率。最后,以光伏、风力涡轮机、混合微电网为范例建立了仿真模型,该模型可应用于不同的场景,例如小型商业和住宅建筑。仿真结果验证了引入的策略对于在不同模式下运行的混合微电网的有效性和可行性 关键词:分布式协调、公用电网、逆变器转换器、分层控制、微电网。