CMMC 最终确定后,您将需要满足其要求。CMMC 将随着时间的推移逐步实施;但是,您可能不一定有更多时间获得 CMMC 认证。例如,您的组织可能位于受 CMMC 约束的另一个承包商的供应链下游,在这种情况下,根据 DFARS 252.204-7020,承包商必须将 CMMC 要求下发到您的组织。正如 Matt Travis(CyberAB 首席执行官)在最近的 Preveil 网络研讨会中指出的那样:“如果您是那些希望旷日持久的规则制定能够拯救您的公司之一,那么您就被误导了,这是一种非常鲁莽的业务经营方式”。DIB 中的普通小公司需要 12-18 个月的时间来准备其 CMMC 评估。这意味着现在是改善您的网络安全态势的时候了。 CMMC 2 级的安全要求与 NIST SP 800-171 相同,因此获得 CMMC 2 级认证的最有效途径是通过 NIST SP 800-171 合规性。
作为全球能源危机的有前途的解决方案,自1968年成立以来,太阳能发电站的概念已经进行了广泛的研究。然而,这个雄心勃勃的项目的实现面临重大挑战,尤其是在预测这些超大结构的动态行为时。本文提供了针对解决与SSPS相关的动态问题的四种突出数值分析方法的全面审查:有限元方法,绝对节点坐标方法,浮动框架公式方法和结构保存方法。我们深入研究了每种方法的优点和缺点,突出显示了它们在SSPS动力学背景下的适用性和局限性。认识到SSPS结构的固有复杂性,我们提出将结构提供方法集成到有限元软件框架中,为SSPS动态行为的准确有效的数值分析提供了潜在的有效途径。
摘要 :风能的随机性与波动性给风电并网带来巨大挑战,基于电解池制氢与超级电容的混合储能技术成为平抑风电功率波动的有效途径。在建立并网型风氢耦合系统工作特性约束和混合储能系统初始投资成本最小的基础上,提出了基于低通滤波-波动观测的碱性电解池-超级电容混合储能配置方法,并制定了基于超级电容SOC(荷电状态)的混合储能协调控制策略。实例研究结果表明,本文提出的混合储能系统配置方法及控制策略有效,可降低风电并网功率波动,满足并网标准。
摘要。由于世界人口和生产量的增加,对能源的需求也逐年增加。利用太阳能是解决世界各国以及我国能源问题的最有效途径之一。太阳能是廉价且环保的资源之一,制造基于无机和有机半导体材料的廉价且有前景的太阳能电池具有重要意义。世界各地正在进行研究和开发工作,旨在创造和生产基于半导体聚合物和酞菁染料的新型太阳能电池。在这方面,由基于半导体聚合物材料、金属和非金属原子的光敏染料以及酞菁染料获得的太阳能电池由于其灵活性、设计简单、环保和经济性而成为目前可用的太阳能电池之一。提高基于有机半导体化合物的复合材料的效率,确定其物理化学和操作特性,识别可以替代硅基太阳能电池板投入生产的太阳能电池的半导体聚合物和酞菁基染料,正在对太阳能电池提取中使用太阳能元素进行大规模的研究和开发工作。
冬季热电联产机组运行模式为“以热定电”,导致风电弃风[12]。为此,研究人员引入电热解耦装置来解决该问题。为实现热电联产机组热电解耦,在热电联产机组旁安装电储能装置和热储能装置。电力系统与供热系统协调运行,可以增加风电上网电量,是提高系统运行灵活性的有效途径[13-15]。通过引入电热转换装置,可以有效抑制可再生能源发电的波动,从而减少可再生能源弃风[16,17]。文献[18]提出了一种住宅小区局部尺度储热模型,研究了储热装置大小对持续供暖时间的影响。研究的设备包括电锅炉、储热装置、热泵等,随着设备投入的增加,设备供热能力的增量不再理想。
摘要:为实现无线通信无缝覆盖的愿景,天地一体化网络被提出作为第六代(6G)移动通信系统的关键组成部分。然而随着无线设备的增加,空中网络使用的频谱逐渐变得拥挤,空间网络也迫切需要开发新的频段来解决频谱短缺问题。作为解决频谱短缺问题的有效途径,空地网络之间的频谱共享得到了广泛的研究。本文总结了空地网络之间频谱共享的最新研究进展。首先,本文概述了空中网络和空间网络,介绍了空中网络和空间网络的主要应用场景。然后,本文总结了空地网络之间的频谱共享技术,包括现有的频谱使用规则、频谱共享模式和关键技术。最后,我们总结了空地网络之间频谱共享的挑战。本文为天地一体化网络的频谱分配和频谱共享提供了指导。
研究和药物开发生态系统中的许多障碍和挑战导致了这种历史性的进展缓慢;值得注意的是,制药公司(行业)投资和商业化新疗法的经济激励有限,以及行业与学术研究人员(学术界)之间的目标不一致,而学术研究人员推动了我们对这些疾病的科学理解和新药的临床试验。在许多情况下,决心克服这些障碍的父母和家人通过建立非营利组织(NPO)来提高认识和资助儿童癌症研究,成为变革的有力倡导者。最终,为患癌症的儿童提供新的治疗方法需要主要利益相关者(NPO、学术界和行业)之间的合作,与制定和管理儿童癌症研究和药物开发监管要求和激励措施的卫生当局密切合作。近年来,这些利益相关者之间的合作已被证明是推进儿童癌症研究的有效途径。
式中,T d 表示信号延迟,K为系数,DK表示介质材料的介电常数。可以看出,材料的介电常数越低,信号延迟越低,信号保真度越高。因此,在第五代通信技术深入发展的背景下,使用低k材料成为降低信号滞后时间的有效途径。一般在微电子领域常用的介质材料都是介电常数相对较低的材料。低介电材料是指介电常数高于空气(1)而低于二氧化硅(3.9)的材料,其值范围在1~3.9之间。低介电聚合物材料因具有易加工、热稳定性、电绝缘性等优点,被广泛应用于电子电工、电子集成、印刷电路板、通讯材料等领域。目前已知聚四氟乙烯(PTFE)[6, 7]、液晶聚合物(LCP)[8 – 10]、聚酰亚胺(PI)[11 – 14]等已广泛应用于电路板基材,环氧树脂、氰酸酯树脂等也作为优良的胶粘剂广泛用于电子设备的封装材料[15 – 17]。图1为环氧树脂、氰酸酯树脂和聚四氟乙烯的介电性能。
追求高水平的掺杂而不会恶化结晶度是非常困难的,但对于释放材料的隐藏力至关重要。这项研究证明了通过激光至关重要的自由基,硼龙二氢化合物(BH 2)的激光振动激发(BH 2)在燃烧化学蒸气期间保持晶格完整性的有效途径。改进的钻石结晶度归因于硼氢化硼(BH)的相对丰度的激光,热抑制的热抑制,其过度存在会诱导硼隔离并扰乱结晶。BDD的硼浓度为4.3×10 21 cm -3,膜电阻率为28.1毫米·CM,孔迁移率为55.6 cm 2 v -1 s -1,超过了商业BDD。高导电和结晶的BDD在传感葡萄糖方面具有提高的效率,证实了激光激发在产生高性能BDD传感器方面的优势。在掺杂过程中重新获得激光激发的结晶度可以消除半导体行业的长期瓶颈。
现有关于众创空间的研究大多侧重于内部主体(如创客)或外部因素(如政策扶持、生态环境等),对众创空间一系列机制设计的探讨相对较少。本文从平台服务、资源集聚、网络连接和内生性文化保障四个方面理论化众创空间的运行机制,运用模糊集定性比较分析(fsQCA)方法对浙江省63家众创空间的数据进行分析,提出合理的众创空间机制设计方案。研究结果表明,众创空间的创新性是各种运行机制协同作用的结果,其中,平台服务功能、资源集聚渠道、正式链接、成果共享文化是众创空间不可或缺的支撑机制。提出促进众创空间创新的有效途径有两种:一是防范外部资源提供者的干预;第二,建立包容的试错文化。