摘要:经过长期发展,由于对环境的影响减小以及光伏板成本不断下降,太阳能在现代电力系统中的渗透率仍在快速增长。同时,由于太阳能具有间歇性,配电网必须应对大量且频繁的电力波动,这会影响电网稳定性并可能导致低压电网电压升高。为了减少这些波动并确保稳定可靠的电力供应,引入了储能系统,因为它们可以根据需求吸收或释放能量,从而为光伏系统提供更大的控制灵活性。目前,储能技术仍在开发中,并已集成到可再生能源应用中,尤其是在智能电网中,降低成本和提高可靠性是主要任务。本研究回顾并讨论了几种用于混合光伏和储能系统的有功功率控制策略,这些系统为电网支持提供辅助服务。还回顾了储能系统在并网光伏应用中的技术进步和发展。
以限电模式运行的光伏系统可能会提供新的服务。它们可以在限电模式下运行,例如提供对称电力灵活性、有功功率设定点运行或能量储备,从而为电网稳定性做出额外贡献。根据所应用的控制系统,它们可用于减少预测误差或补偿意外的负载或生产变化。这种光伏限电模式在岛屿电力系统中可能更有价值,因为岛屿电力系统的电网频率通常不如大型互联大陆电网稳定。
GRIDCON ® ACF 工业版是具有挑战性的补偿任务的首选,这些任务需要可靠性和安全性,例如,甚至在超出正常工作电压和具有挑战性的环境条件下:I 可在满功率下运行高达 690 V 或更高电压,而无需降容I 额定电流可以以模块化方式从 125 A 扩展到 3,000 A,例如用于 STATCOM 系统I 高功率密度和紧凑设计I 低损耗I 非常耐用的薄膜电容器I 过电压类别 III 高达 1000 V - 即使在具有隔离中性点的电网中(IT 网络配置)I 防护等级可达 IP 54,可选外部水冷以实现完全封装I 动态补偿无功功率、谐波和闪变,以及在一个单元中平衡负载
摘要 — 在本文中,提出了一个模型预测调度框架,利用储能系统 (ESS) 来调节配电系统的电压。目标是利用 ESS 资源协助调节电压,同时减少有载分接开关 (OLTC)、电容器组等传统设备的使用率。所提出的框架是两阶段解决方案的一部分,其中次级层根据 1 小时的发电和负载预测每 5 分钟计算一次 ESS 调度,而主层将处理实时不确定性。在本文中,制定了调度 ESS 的次级层。仿真结果表明,通过提供有功和无功支持来调度 ESS 可以最大限度地减少配电网中的 OLTC 移动,从而延长传统机械设备的使用寿命。索引词 — 有源配电网、分布式能源、储能、模型预测控制、电压调节。
(17)
感谢您购买 PreSonus® StudioLive™ AI 系列有源扬声器。PreSonus Audio Electronics 设计了 StudioLive AI 系列扬声器,采用高级组件,确保您的 PA 系统在整个使用寿命期间都能发挥最佳性能。StudioLive AI 系列扬声器是首款价格实惠的有源 PA 扬声器系统,可在舞台上提供录音室监听器的精确度 — 异常清晰、连贯的声音 — 同时提供所需的功能和保护系统,可在各种场所和任何音乐类型中混合出出色的现场表演。
为遵守旨在限制传导发射水平的 EMC 法规,需要在开关调节器和主输入源之间插入低通 EMI 滤波器。图 3-1 显示了千瓦级并网应用中单相(三线)和三相(四线)系统的典型滤波器布置。L、N 和 PE 分别指火线、中性线和保护接地端子。如图所示,多级滤波器提供高滚降,常用于高功率交流线路应用,在这种应用中,CM 噪声通常比差模 (DM) 噪声更难缓解。虽然图 3-1 省略了用于浪涌脉冲保护和电阻放电的组件,但该原理图确实包含与输入电源串联的线路阻抗稳定网络 (LISN),以便测量总 EMI,包括 DM 和 CM 传播分量。
摘要 我们概述了目前国际空间站 (ISS) 上两个最重要的辐射探测系统 ISS-RAD 和 Timepix。ISS-RAD 是一个单一的大型装置,能够探测带电和中性高能粒子。在空间站运行的前三年半中,ISS-RAD 大部分时间都定期转移到不同的模块,包括 USLab、Columbus、JEM、Node2 和 Node3。相比之下,基于 Timepix 的探测器小得多,部署在空间站周围的多个位置。这些装置的第一代称为 REM,即辐射环境监测器。第二代装置最近已部署,称为 REM-2 装置。我们将简要介绍这些系统中使用的技术及其功能。
在这个时代,基于可再生能源的分布式发电源 (DG) 是一种清洁能源,正在迅速融入配电系统,以满足不断增长的电力需求。但是,由于可再生 DG 对自然资源的依赖,它只能提供波动电力,无法根据负载需求进行调度。此外,可能会发生逆向功率流,配电系统运营商可能会遭受损失 [1]。作为解决上述问题的一种方法,储能系统应运而生,并促进了可再生 DG 的融入。[2] 详细讨论了各种 ESS 技术、应用和效率。讨论表明,BESS 主要用于运营项目。然而,规模不合适的 BESS 可能会给配电网中 ESS 的商业运营带来麻烦 [3]。优化位置和大小的 ESS 安装可以有效提高配电系统的可靠性和效率[4]。M.Nicketal.通过优化位置安装适当大小的 ESS,最大限度地降低了 ESS 安装的总投资成本,并使用二阶锥规划 (SOCP) 降低了电力系统支出[5]。在配电网中安装电池储能系统 (BESS) 不仅可以提高电力系统效率,还可以提高电力供应商的电力交易灵活性,以实现利润最大化[6]。随着配电网中可再生能源分布式发电的增加,安装 BESS 还可以支持增加