除了消除谐波失真外,有源谐波滤波器还解决了其他几个电能质量难题。我们的选择性操作模式允许您根据特定的性能水平定制功能。通过注入基波无功功率,轻松配置功率因数改进。与传统技术不同,我们的实时响应可确保无功功率有效地馈送到快速波动的负载,如焊机、起重机等。它可以减轻电压变化和闪烁。即使是三相系统中的不平衡负载,如点焊,也可以得到解决。
有源配电网(ADN)表现出源-网-荷-储互动的特性。随着电力电子技术的飞速发展,电力电子装置被广泛应用于源-网-荷-储三者之间。大规模分布式电源的存在可能导致电压质量下降,而大型电力电子设备的应用还可能导致严重的谐波畸变,电能质量已成为有源配电网发展中的重要问题之一。本文对有源配电网源-网-荷-储互动的电能质量特性进行分析。首先,考虑有源配电网中源-网-荷-储互动,分析电压偏差和波动并进一步量化其程度。然后,建立电力电子元件的源-荷-储谐波模型,为谐波分析奠定基础。此外,提出了有源配电网的解耦谐波潮流算法来分析系统谐波分布。最后,考虑光伏与储能的位置和容量,分析了IEEE 33节点配电网中光伏与储能的相互作用及电能质量,储能的接入可以有效抑制光伏引起的20%以上的电压偏差和6%以上的电压波动,但谐波畸变率可能会进一步增大。
摘要 — 有源植入式医疗设备的密封和非密封封装通常由氧化铝等陶瓷制成。丝网印刷 PtAu 糊剂是功能结构最先进的金属化方法。由于 Au 在热暴露下会发生固态和液态扩散,焊接时间有限;否则金属结构容易分层。此外,研究表明,带焊料的 PtAu 会在 37.4 年后失效。我们建立了一种氧化铝薄膜金属化工艺来克服这些缺点。金属化由溅射铂和钨钛制成的底层粘附层组成,以增加与氧化铝基板的粘附强度。由于金具有较高的扩散趋势,我们避免在这项工作中使用金。相反,所使用的材料具有相对较低的扩散特性,这可能会提高组装和封装过程中的长期机械性能和可用性。
图 2. ZnO-TFTs 阵列的电气、机械和光学特性。 (A) VD = 5V 时具有不同 W/L 比的 TFT 的传输曲线。 (B) W/L = 80/5 的 TFT 的输出特性,显示漏极电流 (ID) 与 VD 的关系,VG 从 -1 V 变化至 5 V(步长 = 1 V)。 (C) 一个阵列的十二个 ZnO-TFTs 电极的传输特性。红线为平均值。 (D) 来自同一阵列的十二个 ZnO-TFTs 电极的跨导。蓝线为平均值。 (E) ZnO-TFTs 电极在弯曲半径为 15 cm 的情况下经过 10 次弯曲循环后仍保持稳定的电气特性。 (F) ZnO-TFTs 阵列的透射光谱。插图是 3 × 4 ZnO-TFTs 阵列的光学图像,显示了其高透明度。白色框架标记电极阵列。比例尺:2 毫米。
频段 无线电业务 频段 无线电业务 401-403 MHz EESS (Es) 432-438 MHz eess(有源) 460-470 MHz [eess (sE)] 1215-1300 MHz EESS(有源) 1525-1535 MHz eess 3100-3300 MHz eess(有源) 1690-1710 MHz [eess (sE)] 5250-5570 MHz EESS(有源) 2025-2110 MHz EESS (Es) (ss) 8550-8650 MHz EESS(有源) 2200-2290 MHz EESS (sE) (ss) 9200-9800 MHz EESS(有源) 7190-7250 MHz EESS (Es) 9800-9900 MHz eess(有源) 8025-8400 MHz EESS (sE) 9900-10400 MHz EESS (有源) 13.75-14 GHz eess 13.25-13.75 GHz EESS (有源) 25.5-27 GHz EESS (sE) 17.2-17.3 GHz EESS (有源) 28.5-30 GHz eess (Es) 24.05-24.25 GHz eess (有源) 29.95-30 GHz eess (Es)(ss) 35.5-36 GHz EESS (有源) 37.5-40 GHz eess (sE) 78-79 GHz [EESS (有源)] 40-40.5 GHz EESS (Es) / eess (sE) 94-94.1 GHz EESS (有源) 65-66 GHz EESS 130-134 GHz EESS(有源)
声学超材料具有传统材料所不具备的异常反射和折射率,在工程应用中日益受到重视。这些人工结构可以实现多种新功能,例如负有效特性、非凡的波操控、增强的吸声和隔音、隐形、声波聚焦以及高效的能量收集。为了评估声学超材料领域的研究进展,我们采取了一种新颖的视角,追溯了从被动声学超材料到主动压电声学超材料的发展。本文总结了声学超材料的最新研究进展,第一部分描述了被动声学超材料,第二部分转向主动压电声学超材料和超表面。内容包括它们的一般定义、机制、分类、结构和潜在应用。最后,我们从实际工程的角度回顾了当前的技术挑战,并讨论了该领域的未来前景。
摘要:本文将新兴的混合型有源三次谐波电流注入变换器(H3C)应用于电池储能系统(BESS),形成一种新型的H3C-BESS结构。与常用的两级VSC-BESS相比,所提出的H3C-BESS能够减少无源元件和开关损耗。分析了H3C-BESS的工作原理,推导了其数学模型。针对系统的不同运行模式,提出了闭环控制策略和控制器设计,包括电池电流/电压控制和注入谐波电流控制。特别是,通过电网电流控制实现有源阻尼控制,无需无源阻尼电阻即可抑制LC滤波器谐振。仿真结果表明,所提出的拓扑结构及其控制策略具有快速的动态响应,建立时间小于4 ms。此外,电池电流和电网电流的总谐波畸变率分别仅为2.54%和3.15%。注入谐波电流的幅值仅为电网电流的一半,表明电流注入电路的损耗很小。实验结果验证了所提方案的有效性。
本文件为制定方法标准,部分内容参考国内现行标准、国外闭环器械监管指南以及科学 研究中的采用脑机接口技术的医疗器械常用测试方法。如 YY 0989.3-2023 手术植入物有源 植入式医疗器械第 3 部分:植入式神经刺激器、美国食品药品监督管理局 Technical Considerations for Medical Devices with Physiologic Closed-Loop Control Technology 、期刊论 文 Translating the brain-machine interface/Brain computer interface: control signals review/Brain computer interface: control signals review/A Comprehensive Review on Brain – Computer
联合充电系统和 CHAdeMO ® 所管辖的电动汽车充电标准在不断变化,并推动更快的电池充电速度,通常需要在充电站花费不到 30 分钟的时间才能为电动汽车充满电。直流充电站通常是 3 级充电器,可以提供 120-240 kW 之间的极高功率。这些直流充电站是独立单元,包含 AC/DC 和 DC/DC 电源转换级。充电站内部堆叠了多个电源转换模块,以提高功率水平并实现快速充电。直流快速充电站为电动汽车的电池提供高功率直流电流,而无需通过任何车载 AC/DC 转换器,这意味着电流直接连接到电池。如今路上的大多数汽车只能处理高达 50 kW 的功率。新型汽车能够以更高的功率充电。随着电动汽车续航里程越来越长且电池容量越来越大,直流充电解决方案正在不断开发,以通过高达 250 kW 或更高的快速充电站支持长续航电动汽车电池。
无线通信技术的飞速发展极大地推动了卫星通信的发展。卫星通信具有信息传输范围广、支持多个接收机同时通信等优势。随着卫星通信技术的不断进步,人们对更高传输速度和更宽频段的需求不断增加,这增加了人们对毫米波频谱中 Ka 波段频率的兴趣。与低频段相比,Ka 波段的数据传输速率更快,而且由于其超高频特性,也易于实现超低延迟。然而,大多数 K/Ka 波段卫星距离地面终端约 35,000 公里,距离和大气条件会导致信号衰减很大。