1植物病理学部门,植物保护局,Ecole Agriculture Meknes,KM10,RTE HAJ KADDOUR,BP S/40,MEKNES 50001,摩洛哥; il.dehbi@edu.umi.ac.ma(I.D。); oachemrk@enameknes.ac.ma(O.A.); ezzouggarirachid@gmail.com(R.E.); ikramlegr@gmail.com(i.l.); laaslisalaheddine@gmail.com(S.-E.L.)2植物生物技术与分子生物学实验室,科学系,穆莱·伊斯梅尔大学,BP 11201,Zitoune,Meknes 50000,摩洛哥; h.mazouz@fs-umi.ac.ma 3生物技术,自然资源保护和价值实验室(LBCVNR),科学学院Dhar El Mehraz,Sidi Mohamed Mohamed Ben Abdallah University,FEZ 30000,FEZ 30000,摩洛哥4号,环境科学和管理部,Spheres Research,Spherers Research,Spheron lie lie li li li lie fe。 meljarroudi@uliege.be 5生物技术部门,区域农业研究中心,Inra – Morocco,Rabat 10080,摩洛哥; fmokrini.inra@gmail.com 6植物保护实验室,梅克尼斯地区农业研究中心,国家农业研究所,公里,公里13,路线,哈吉·卡德杜(Haj Kaddour),bp 578,meknes 50001,摩洛哥; zineb.belabess@inra.ma *通信:rlahlali@enameknes.ac.ma
Stuart,美国佛罗里达州,美国佛罗里达州,2025年2月12日:调查了肌酸在健康和绩效方面的作用以及国际体育营养学会的作用的研究人员已经越来越关注政府机构试图限制饮食补充剂的销售,包括含有肌酸的饮食补充剂,包括儿童和青少年。肌酸是在人体的每个细胞中发现的一种天然存在的化合物,在细胞代谢中起着至关重要的作用。肌酸的每日营业额约为每天2 - 4克,具体取决于肌肉质量和体育锻炼水平[1,2]。每天大约一半的肌酸需求是由氨基酸(精氨酸,甘氨酸,甲氨酸)在体内合成的,并在肌肉,脑,心脏和其他组织中以游离肌酸或磷酸磷脂的形式储存[1]。剩余的每日需要维持正常的细胞和组织水平,主要来自食用肉类和鱼类。例如,一磅(16盎司)红肉和鱼含有约1 - 2克肌酸。在细胞中,肌酸变成磷酸蛋白,这是维持细胞能量可利用性至关重要的化合物,尤其是在代谢压力的条件下,例如强烈的运动,损伤或疾病期间,以及一些代谢性疾病,这些疾病适用于广泛年龄范围内的不同人群。
澳大利亚、七国集团和其他商业倡导团体签署了联合国全球生物多样性框架,该框架将自然置于可持续发展议程的首位。该框架要求签署国在 2030 年前以 2020 年为基准,遏制和扭转自然丧失的趋势。这包括提高物种、种群和生态系统的健康、丰富度、多样性和恢复力,使自然明显且可衡量地走上恢复之路。根据这一框架,自然必须在 2050 年前恢复,这样繁荣的生态系统和基于自然的解决方案才能为子孙后代提供支持。简而言之,自然积极就是“遏制衰退,保护剩余,恢复其余”。这种方法要求超越获得环境批准所需的范围,并涵盖一系列广泛的缓解和补偿活动。
摘要:影响Holm Oak的根腐是伊比利亚半岛高生态和经济损失的原因,强调了发展疾病控制方法的相关性。这项工作的目的是评估由有益的生物(Trichoderma Complex,T-Complex)组成的生物处理的作用,对在两个对比的Holm Oak Ecotyp中感染的Holm Oak幼苗感染了phytophthora cinnamomi,一种被认为是高度易于耐受的霍尔姆oak oak Ecotyp,一种被认为是耐受性的(hu)和另一种被认为是耐受性的。为此,在温室中进行了完整的多因素测试,并监测幼苗以进行生存分析以及形态和生理属性评估。死亡率始于易感性(HU),而不是在耐受性(GR)生态型中,并且由于植物的生态型,生存率显示出不同的趋势。耐受性生态型显示出高生存率和对利用微生物治疗的更好反应。glm表明,治疗之间差异的主要原因是生态型,其次是T-复合和灌溉,并且发现生态型和肉桂疟原虫之间存在弱相互作用。光合作用(a)与蒸腾(TR)之间的线性关系显示,在DR型条件下,在DR型条件下,感染和接种植物的A/TR速率增加。受益的微生物治疗对耐受性生态型的影响更大。对Q的遗传多样性的理解和水应力对生物处理对根腐病的有效性的影响提供了有用的信息,以开发环保疾病控制方法来解决Holm Oak的下降。
摘要:我们展示了一种简便的方法,用于批量生产氧化石墨烯(GO)散装修饰的屏幕打印电极(GO-SPE),这些电极(GO-SPE)是经济的,高度可重现的,并提供了分析有用的输出。通过制造具有不同百分比质量掺入(2.5、5、7.5和10%)的GO-SPE,观察到对所选的电分析探针的电催化作用,与裸露的/石墨SPE相比,随着更大的GO掺杂而增加。最佳质量比为10%,达到90%的碳墨水显示出朝向多巴胺(DA)和尿酸(UA)(ua)的电分析信号。×10的幅度比在裸露/未修改的石墨SPE上可实现的大小要大。此外,10%的GO-SPE表现出竞争性低的检测极限(3σ)对DA的DA。81 nm,它优于Ca的裸露/未修饰的石墨SP。780 nm。改进的分析响应归因于居住在GO纳米片的边缘和缺陷位点的大量氧化物种,可用于对内晶的电化学分析物表现出电催化反应。我们报道的方法简单,可扩展性且具有成本效益,可用于制造GO-SPE,该方法表现出竞争激烈的LOD,并且在商业和药用应用中具有重大兴趣。
迅速增加的人口,加上气候变化以及对合成肥料过度依赖的数十年,导致了两个紧迫的全球挑战:粮食不安全和土地退化。因此,至关重要的是,实践可以使土壤和植物健康以及可持续性更加积极地追求至关重要。可持续性和土壤生育能力包括诸如改善贫困和干旱土壤中植物生产力,保持土壤健康的生产力,并最大程度地减少对贫困土壤管理带来的生态系统的有害影响,包括农业化学品和其他污染物的径流。促进细菌(PGPB)的植物生长可以通过多种方式改善粮食生产:通过促进宏观和微量营养素的资源获取(尤其是N和P),调节植物激素水平,拮抗致病因素并维持土壤生育能力。PGPB包括属于多个门的细菌的不同功能和分类群,包括蛋白质细菌,富公司,细菌,细菌和静脉细菌等。本综述总结了这些有益的土壤细菌用来促进植物健康的机制和方法,并询问它们是否可以进一步发展为有效的,潜在的商业植物刺激剂,这些植物刺激剂实质上降低或替换了涉及食品生产和生态系统稳定性的各种有害实践。我们的目标是描述有益植物 - 微生物相互作用涉及的各种机制,以及它们如何帮助我们实现可持续性。
在上下文中:社会工作者的模型和培养高触摸,基于价值的人类合作,基于道德原则和跨学科实践。社会工作者可以帮助弱势个人,团体和社区与
有益的资源...............................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................