等,2022)由自由能原理(FEP)诱导。除了是一项数学和物理上丰富的努力之外,该演讲还强调了 FEP 是一项重要的科学原理。我们将只关注这些含义之一,即 Friston 等人(2023)图 2 中呈现的定性不同系统类别的类型学。我们首先回顾所呈现的相关区别,即马尔可夫毯(MB)的感知和活动状态与内部和外部状态(即感兴趣的系统 A 的状态及其物理环境 B )之间的因果关系。然后,我们考虑当经典 MB 被全息屏幕取代时会发生什么,全息屏幕在 FEP 的量子信息理论公式中充当 MB 的功能(Fields、Friston、Glazebrook & Levin,2022;Fields 等,2023)。经典 MB 与全息屏幕之间最明显的区别在于,MB 的状态是“宇宙”状态空间的元素,A 和 B 是其组成部分,而全息屏幕的状态是该空间的附属状态。我们将展示这种差异在质量上区分了 FEP 的经典和量子公式。特别是,当经典 MB 被全息屏幕取代时,Friston 等人 (2023) 的图 2 中所示的系统类别之间的区别就会消失。不仅所有量子系统都以图 2 中定义的意义活跃,而且所有量子系统都是奇异的,并且可以被视为“推断”自己的行为,我们将继续解释。
在基于量子阱的异质结构材料中,研究能态密度对量化磁场强度和占据的依赖关系,可以为纳米级半导体结构中电荷载流子的能谱提供有价值的信息。当低维半导体材料暴露于横向量化磁场时,能态密度可以通过动力学、动力学和热力学量的振荡依赖关系来测量——磁阻、磁化率、电子热容量、热电功率、费米能和其他物理参数 [3, 4]。由此可见,在横向和纵向磁场存在下研究矩形量子阱导带能态密度的振荡是现代固体物理学的迫切问题之一。
在一个多折的宇宙中,重力从纠缠中通过多重机制出现。结果,重力样效应出现在它们是真实或虚拟的纠缠粒子之间。远距离,无质量的重力是由无质量虚拟颗粒的纠缠导致的。大量虚拟颗粒的纠缠导致非常小的尺度上的重力贡献。多重机制也导致了一个离散的时空,具有随机的行走分形结构和非交通性几何形状,该几何形状是Lorentz不变的,并且可以用显微镜黑洞对时空节点和颗粒进行建模。所有这些恢复在大尺度上的一般相对论,半古典模型保持有效,直到比通常预期的尺度较小。重力可以添加到标准模型中。这可能有助于解决标准模型(SM)的几个开放问题,而没有重力以外的其他新物理学。这些考虑暗示了重力与标准模型之间的更强关系。
量子机器学习是最有希望获得实际优势的研究领域之一,它是量子计算和传统机器学习思想相互影响的产物。在本文中,我们应用量子机器学习 (QML) 框架来改进金融数据集中普遍存在的噪声数据集的二元分类模型。我们用来评估量子分类器性能的指标是受试者工作特征曲线下面积 (ROC/AUC)。通过结合混合神经网络、参数电路和数据重新上传等方法,我们创建了受 QML 启发的架构,并利用它们对非凸二维和三维图形进行分类。对我们的新 FULL HYBRID 分类器与现有量子和经典分类器模型进行广泛的基准测试表明,与已知的量子分类器相比,我们的新模型对数据集中的非对称高斯噪声表现出更好的学习特性,并且对于现有的经典分类器表现同样出色,并且在高噪声区域内比经典结果略有改善。
摘要:离散傅里叶变换 (DFT) 是光子量子信息的基础,但将其扩展到高维的能力在很大程度上取决于物理编码,而频率箱等新兴平台缺乏实用方法。在本文中,我们表明,d 点频率箱 DFT 可以用固定的三分量量子频率处理器 (QFP) 实现,只需在 d 每次增量增加时向电光调制信号添加一个射频谐波即可。我们在数值模拟中验证了门保真度 FW > 0.9997 和成功概率 PW > 0.965,最高 d = 10,并通过实验实现了 d = 3 的解决方案,利用并行 DFT 的测量来量化纠缠并对多个双光子频率箱状态进行层析成像。我们的结果为量子通信和网络中的高维频率箱协议提供了新的机会。
量子计算机使用量子机械原理进行计算,在许多计算问题中,它们比古典计算机更强大(Shor 1994; Grover 1996)。开发了许多量子机学习算法,例如量子支持矢量机,量子主体分析和量子玻尔兹曼机器(Wiebe等人。2012; Schuld等。2015a; Biamonte等。2017; Rebentrost等。2014;劳埃德等。2014; Amin等。2018; Gao等。2018),这些算法比其经典版本更有效。近年来,DNNS(Lecun等人2015)成为机器学习中最重要,最有力的方法,该方法广泛应用于计算机视觉中(Voulodimos等人。2018),自然语言处理(Socher等人2012)和许多其他领域。DNN的基本单元是感知器,它是一种仿射转换,以及激活函数。激活函数的非线性和深度给出了DNN大量表示
量子计算机利用量子力学原理进行计算,在许多计算问题上比经典计算机更强大(Shor 1994;Grover 1996)。许多量子机器学习算法被开发出来,例如量子支持向量机、量子主成分分析和量子玻尔兹曼机(Wiebe 等 2012;Schuld 等 2015a;Biamonte 等 2017;Rebentrost 等 2014;Lloyd 等 2014;Amin 等 2018;Gao 等 2018),这些算法被证明比经典版本更有效。近年来,DNN(LeCun et al. 2015 )成为机器学习中最重要和最强大的方法,广泛应用于计算机视觉(Voulodimos et al. 2018 )、自然语言处理(Socher et al. 2012 )等许多领域。DNN的基本单元是感知器,它由一个仿射变换和一个激活函数组成。激活函数的非线性和深度赋予了DNN很多的表示能力
摘要:我们提出了量子布尔网络,它可以归类为确定性可逆异步布尔网络。该模型基于先前开发的量子布尔函数概念。量子布尔网络是一种布尔网络,其中与节点相关的函数是量子布尔函数。我们研究了这个新模型的一些特性,并使用量子模拟器研究了网络连接函数和我们允许的运算符集的动态变化。对于某些配置,该模型类似于可逆布尔网络的行为,而对于其他配置,可能会出现更复杂的动态。例如,观察到大于 2 N 的循环。此外,使用类似于以前用于随机布尔网络的方案,我们计算了网络的平均熵和复杂度。与经典的随机布尔网络(其中“复杂”动态主要局限于接近相变的连通性)相反,量子布尔网络可以表现出稳定、复杂和不稳定的动态,而与其连通性无关。
摘要 — 量子置换垫或 QPP 最早由 Kuang 和 Bettenburg 于 2020 年提出 [15]。QPP 是一种由多个 n 量子比特量子置换门组成的通用量子算法。作为一种量子算法,QPP 既可以在量子计算系统中实现为对 n 量子比特状态进行操作以进行转换的量子电路,也可以在由 n 位置换矩阵垫表示的经典计算系统中实现。QPP 具有两个独特的特点:巨大的香农信息熵和置换矩阵之间的非交换性或广义不确定性原理。置换变换是输入信息空间和输出密文空间之间的双射映射。这意味着,由于不确定性关系,QPP 具有可重用的香农完全保密性。QPP 是希尔伯特空间上一次性垫或 OTP 的推广,而 OTP 是伽罗瓦域上 QPP 的简化。基于此,本文研究了一种 AES 变体,将 AES 的 ShiftRows 和 MixColumns 与 QPP 结合起来,形成一种量子安全轻量级密码体制,称为 AES-QPP。AES-QPP 将 SubBytes 和 AddRoundKey 与 16 个 8 位置换矩阵的相同 QPP 结合起来,本质上 SubBytes 是一个特殊的 8 位置换矩阵,AddRoundKey 是从 XOR 操作中选择的 16 个 8 位置换矩阵。通过随机选择 16 个带有密钥材料的置换矩阵,AES-QPP 可以容纳总共 26,944 位香农熵。它不仅提高了对差分和线性攻击的安全性,而且还将轮数大大减少到 5 轮。AES-QPP 可能是量子安全轻量级密码体制的良好候选者。
摘要我们使用一组差异倾向得分加权回归模型来估计交通网络公司 (TNC) Uber 和 Lyft 对美国城市地区的车辆拥有量、车队平均燃油经济性和公共交通使用量的影响,这些模型利用了 2011 年至 2017 年美国各地的交错市场进入情况。我们发现证据表明,TNC 进入城市地区会导致车辆登记量平均增加 0.7%,并且这些影响在不同城市地区存在显著差异:TNC 进入会导致初始拥有量较高的城市地区(依赖汽车的城市)和人口增长较低的城市地区(TNC 诱导的车辆采用速度超过人口增长)的车辆拥有量大幅增加。我们还发现,跨国公司进入对燃油经济性或公共交通使用的平均影响没有统计学上显著的差异,但发现这些影响在不同城市地区存在差异,包括在收入较高和无子女家庭较多的地区,跨国公司进入后公共交通客流量减少幅度更大。