D-Sub 轻型后壳是保护重量和空间受限的太空应用中的连接器和电缆的关键元件。我们现在提供兼容 Haloring 的 D-Sub 轻型后壳新版本,可满足客户在需要屏蔽的应用中的需求。
摘要我们介绍了Mesogan,这是一种生成3D神经纹理的模型。通过结合生成对抗网络(stylegan)和体积神经场渲染的优势,这种新的图形原始形式代表了中尺度的出现。原始性可以用作神经反射率壳的表面;表面上方的薄体积层,其外观参数由神经网络定义。为了构建神经外壳,我们首先使用带有仔细随机傅立叶特征的stylegan生成2D特征纹理,以支持任意尺寸的纹理而无需重复伪影。我们以学习的高度功能增强了2D功能纹理,这有助于神经场渲染器从2D纹理产生体积参数。为了促进过滤,并在当前硬件的内存约束中启用端到端培训,我们使用了层次结构纹理方法,并将模型训练在3D中尺度结构的多尺度合成数据集上。我们提出了一种在艺术参数上调节Mesogan的可能方法(例如,纤维长度,链的密度,照明方向),并演示并讨论整合基于物理的渲染器。
4.1 总体原则................................................................................................................ 14 4.2 载荷............................................................................................................................... 14 4.3 结构能力评估.............................................................................................................. 15 4.4 材料和焊接................................................................................................................ 16 4.5 评估/验收标准....................................................................................................... 16 4.6 安全等效原则............................................................................................................. 18
疫苗接种是预防或对抗肿瘤以及其他疾病最有效且最具成本效益的方法之一。1,2 有效的肿瘤疫苗应在佐剂的帮助下诱导广泛的体液反应和细胞免疫反应,包括 CD8 + 细胞毒性 T 细胞 (CTL)、CD4 + Th1 或 Th17 细胞反应。3 – 5 然而,最常用的佐剂铝盐(明矾)通常只能引发强烈的抗体反应,且以 Th2 为偏向,6 并且很少有获准用于人体给药的佐剂能够产生足够的细胞免疫反应。7 能够增强体液和细胞免疫反应的新策略仍然是治疗性肿瘤疫苗开发的重点。作为 FDA 批准的公认安全 (GRAS) 颗粒系统,酵母壳壁(β-葡聚糖颗粒)是
4.1 总体原则................................................................................................................ 14 4.2 载荷............................................................................................................................... 14 4.3 结构能力评估.............................................................................................................. 15 4.4 材料和焊接................................................................................................................ 16 4.5 评估/验收标准....................................................................................................... 16 4.6 安全等效原则............................................................................................................. 18
4.1 总体原则................................................................................................................ 14 4.2 载荷............................................................................................................................... 14 4.3 结构能力评估.............................................................................................................. 15 4.4 材料和焊接................................................................................................................ 16 4.5 评估/验收标准....................................................................................................... 16 4.6 安全等效原则............................................................................................................. 18
摘要一种未来的人造视网膜,可以恢复盲人的高敏度视力,将依靠能够使用自适应,双向和高分辨率设备来读(观察)和写入(观察)和写(控制)神经元的尖峰活动。尽管当前的研究重点是克服构建和植入这种设备的技术挑战,利用其能力来实现更急性的视觉感知也将需要实质性的计算进步。使用Ex Vivo多电极阵列实验室原型使用高密度的大规模记录和刺激,我们构成了一些主要的计算问题,并描述了当前的进度和未来解决方案的机会。首先,我们通过使用从大型实验数据集中学到的低维变异性变异性的低维歧管来确定盲视网膜自发活动的细胞类型和位置,然后有效地估计其视觉响应特性。第二,我们通过通过电极阵列传递电流模式来估计对大量相关电刺激的视网膜响应,尖峰对产生的记录进行排序,并使用结果来开发诱发响应的模型。第三,我们通过在视觉系统的整合时间内暂时抛弃各种电刺激的收集来重现给定的视觉目标的所需响应。一起,这些新颖的方法可能会在下一代设备中大大增强人造视力。
4.1 测地线追踪离散化 ................................................................................................................................................ 66 4.2 通过几何程序进行测地线追踪 ................................................................................................................................ 67 4.3 使用优化程序进行测地线追踪 ............................................................................................................................. 72 4.4 地图要求 ...................................................................................................................................................... 77 4.5 地图概念 ............................................................................................................................................................. 78 4.6 地图详述 ............................................................................................................................................................. 80 4.7 唯一性问题 ............................................................................................................................................................. 86 4.8 追踪测地线的精度要求 ............................................................................................................................. 87 4.9 初步验证的图版集 ............................................................................................................................................. 88 4.10 比较验证 .............................................................................................................................................
本文中包含的陈述,技术信息和建议截至本文之日起准确。由于产品的使用条件和使用条件和方法是我们无法控制的,因此,Purolite明确违反了对任何对产品或对此类信息的使用或依赖造成的结果或产生的任何结果的责任;对于任何特定目的,适合性的保证或任何其他明示或暗示的保证,都没有关于所描述的货物或本文提供的信息的任何其他保证的保证。本文提供的信息仅与指定的特定产品有关,并且当该产品与其他材料或任何过程中使用时可能不适用。此处包含的任何内容构成根据任何专利的执业许可,也不应解释为侵犯任何专利的诱因,建议用户采取适当的步骤以确保对产品的任何建议使用不会导致专利侵权。
&这些作者为这项工作做出了同样的贡献,应被视为联合第一作者 *通讯作者。电子邮件地址:zwhdwy@hnu.edu.cn(W。H Zhang); thuangsq@jnu.edu.cn(S.Q。 黄)。电子邮件地址:zwhdwy@hnu.edu.cn(W。H Zhang); thuangsq@jnu.edu.cn(S.Q。黄)。