目的:评估 FDA 批准的两种药物在减肥方面的效果,这些药物用于 Al Dhafra 家庭医学中心 (DFMC) 的完美体重诊所 (PWC) 的肥胖患者,同时评估所用药物的安全性和成本。方法:我们进行了一项单中心队列观察性 16 周监测研究,研究对象为 DFMC PWC 中注射 Saxenda® 利拉鲁肽的患者和开放标签口服奥利司他 3 个月或更长时间的患者。研究对象为体重指数 (BMI) 为 27 kg/m2 或更高且至少患有一种体重相关合并症的参与者,以了解减肥药物的效果。利拉鲁肽患者每次就诊后都会监测体重变化,并从健康信息系统 (HIS) 中提取回顾性数据,用于监测服用奥利司他处方药的患者的体重。使用配对样本 t 检验和双样本 t 检验对连续变量的均值进行比较。结果:两组均包括来自埃马拉蒂(当地人口)的 170 名患者。监测了 Saxenda® 利拉鲁肽组的 94 名患者(平均年龄 34.8±10.27 岁),并审查了奥利司他组的 76 名患者的数据(平均年龄 46.91±10.78 岁)。使用 Saxenda® 利拉鲁肽的患者的平均体重减轻(WL)为 7.14±2.38 千克,显著高于使用奥利司他的患者(1.89±4.47 千克)。只有 14 名(15%)使用 Saxenda® 利拉鲁肽的患者出现暴露体重减轻反应,并继续进行 16 周的治疗方案(平均 WL - 7 千克),达到从基线开始 WL > 4% 的目标。在服用奥利司他并维持每日三次治疗方案 3-7 个月的 11 名患者(14.47%)中,未见明显的暴露体重减轻,因此未达到基线 5% 的目标 WL。结果显示,26.6% 的 Saxenda® 利拉鲁肽和 36.6% 的奥利司他从成本角度来看得到了适当的利用。安全性资料显示,只有 3 名患者(3.2%)因 Saxenda® 利拉鲁肽已知的胃肠道副作用而停止治疗。结论:该分析支持使用利拉鲁肽 3.0mg 进行体重管理,患者需遵守药物治疗以及饮食、运动和行为改变,因为除了先前已知的胃肠道副作用外,没有同时出现安全性/耐受性恶化。奥利司他没有显著的体重减轻,两种药物的依从性都较差。
1。界面限制了AI教练表达自己的文字,合成音频,视频和动画 - 所有这些都强调了连接的艺术性,并且比看和听到另一个人的人(至少在目前至少都没有差别(至少目前)。Human-Machine相互作用的界面约束正在非常快速地减少。Lil Miquela是一个19岁的机器人,居住在洛杉矶,出现在YouTube视频中,在Instagram上(有290万关注者)和其他地方。她仍然具有头像的略带塑料外观(非常适合Instagram!),但仅略微。不久之后,Lil Miquela与她的兄弟姐妹一起,将与我们交谈,就像人类能力,Zoom一样,借鉴了她所支持的AI-Sable智慧的全部程度。鉴于AI教练的界面约束将迅速改善,我们是否能够克服与新型实体相关的奇怪之处,并与非人类系统建立紧密的,信任的关系?
任何航空公司在未事先从 COHOR 获得上述航班时刻表的情况下,不得运营从巴黎奥利机场出发或抵达巴黎奥利机场的航班,欧洲法规中规定的特殊情况或不可抗力情况除外。所有运营没有时刻表的航班或故意在分配时刻表以外的时间运营航班的航空公司都可能受到民航部长的处罚。在与违规航空公司进行听证会后,CAAC(民航行政委员会)可建议民航部长处以罚款,罚款金额最高可达 7,500 欧元,如果再次违规,罚款金额可能翻倍。巴黎奥利机场每年的总时刻表数量上限为 250,000 个,其中近 28,000 个时刻表预留给规划或公共服务航班。
研究目标 我团队的研究目标是控制有机半导体聚合物薄膜的宏观和纳米级形貌,以开发功能性、经济高效、便携且环境友好的有机电子设备。该小组旨在优化有机电化学晶体管(OECT),以提供用于神经病理学检测(联合国目标 3)和用于确定水是否可饮用的细菌检测(联合国目标 6)的新一代生物传感器。为了实现这些目标,该小组精心设计了新的高度结构化的聚合物薄膜,并了解驱动其化学和电化学掺杂的基本机制。我们将各种显微镜技术与先进的原位光谱和电表征技术相结合,以合理指导分子和器件工程。为了开展这项高度跨学科的研究,该小组正在与国际知名的(i)化学家合作,提供用于回答我们研究问题的最先进的性能聚合物,(ii)物理化学家,使用顶尖的表征仪器,以精确度澄清具体问题,以及(iii)生物学家,通过开发功能性生物传感器来评估我们的研究结果并提高技术就绪水平。
用于手术导航的无线惯性磁力仪 电磁跟踪 (EMT) 是临床环境中无视线仪器跟踪和导航的黄金标准。与 GPS 导航类似,医疗器械的位置在 MRI 或 CT 生成的患者身体“地图”上进行跟踪,而无需依赖 X 射线成像,因为 X 射线成像在持续使用的情况下对患者和临床医生都有害。当前的 EMT 技术在标准医疗手术室环境中性能下降。附近的金属物体会引入磁失真误差,从而损害患者体内的准确跟踪。此外,最关键的微创干预需要越来越小的仪器,例如腔内手术,其中使用人体的自然结构(例如静脉和气道)进入手术部位。因此,需要更小的 EMT 传感器来满足这些现代临床需求。我的目标是在小型化、无线操作和使用新的微型传感器更简单地集成到医疗设备方面推进 EMT 技术。利用现代硅制造技术,EMT 传感器的微型化将为将这些微型传感器集成到尖端导管设计中铺平道路。现有磁传感器和智能手机中常见的惯性测量功能的传感器融合将用于减轻材料磁畸变的影响。最后,将探索这些组合传感器单元的无线操作。这些传感器将集成到 Integer 开发的导管和新设备的临床前验证中,并将与法国斯特拉斯堡的图像引导手术研究所 (IHU) 和挪威特隆赫姆的工业和技术研究基金会 (SINTEF) 合作进行,我们的团队与他们有着密切的合作关系。这项研究将加速 EMT 在临床环境中的整合,并改善临床医生和患者的手术结果。
我们正在寻找在植物相互作用与互相相互作用的研究主题,使用遗传,生理,生物化学和/或生态学方法在分子水平上与植物相互作用的研究主题。与Julius-Von-Sachs-Institute分子植物科学的总体主题兼容,“在不断变化的环境中植物的适应和演变”是参与联合项目计划的优势。未来的邮政持有人有望参与新的研究网络的建立。我们重视参与跨学科合作的意愿,尤其是在植物科学和生物中心内,以及积极参与该教师的其他关键研究领域(昆虫研究,感染生物学,理论生物学)。获得第三方资金的经验是先决条件。