量子启发式元启发法是一种将量子力学原理融入使用非量子机器的经典近似算法的求解器。由于量子原理的独特性,量子现象的启发及其在根本不同的非量子系统(而不是真实或模拟的量子计算机)中的实现方式提出了有关这些算法的设计及其结果在真实或模拟的量子设备中的可重复性的重要问题。因此,这项工作的贡献是回答这些问题的第一步,它试图找出现有文献中应该考虑或调整的关键发现,以构建可用于量子机器的混合或全量子算法。这是通过提出和研究四种启发式、模拟和真实的量子细胞遗传算法来实现的,据作者所知,这些算法是使用具有 32 个量子比特的量子模拟器和采用 15 个超导量子比特的真实量子机器在三个量子领域研究的第一个量子结构元启发法。使用 13 个真实实例将蜂窝网络中的用户移动性管理作为验证问题。使用 9 个比较指标对 6 种不同的算法进行了比较。还进行了彻底的统计测试和参数敏感性分析。实验可以回答几个问题,包括量子硬件如何影响所研究算法的搜索过程。它们还为量子元启发式设计开辟了新的视角。© 2021 作者。由 Elsevier BV 出版 这是一篇根据 CC BY-NC-ND 许可开放获取的文章(http://creativecommons.org/licenses/by-nc-nd/4.0/)。
摘要我们使用量子兰科斯(qlanczos)算法在IBM Q Quantum Compertical Comperty Hardwardwear上实现了集体振荡系统的中微子系统的能量水平。我们的计算基于Patwardhan等人引入的多体性中微子相互作用。(Phys Rev D 99,https:// doi。org/10.1103/physrevd.99.123013,2019)。我们表明,哈密顿系统可以分为较小的块,可以使用比将整个系统表示为一个单元所需的量子量较少,从而减少了量子硬件上实现的噪声。我们还使用Trotterterization方法计算集体中微子振荡的过渡概率,该方法在随后在硬件上实现之前就可以简化。这些计算表明,集体中微子系统和集体中微子振荡的能量特征值都可以在量子硬件上使用一定的简化来计算,以符合与确切结果的良好一致性。
摘要 绝热量子计算机是一个有前途的平台,可以有效解决具有挑战性的优化问题。因此,许多人对使用这些计算机来训练计算成本高昂的机器学习模型感兴趣。我们提出了一种量子方法来解决 D-Wave 2000Q 绝热量子计算机上的平衡 k 均值聚类训练问题。为了做到这一点,我们将训练问题表述为二次无约束二元优化 (QUBO) 问题。与现有的经典算法不同,我们的 QUBO 公式针对平衡 k 均值模型的全局解。我们在许多小问题上测试了我们的方法,并观察到尽管 QUBO 公式具有理论上的优势,但现代量子计算机获得的聚类解决方案通常不如最佳经典聚类算法获得的解决方案。尽管如此,量子计算机提供的解决方案确实表现出一些有希望的特性。我们还进行了可扩展性研究,以估计使用未来量子硬件在大型问题上我们的方法的运行时间。作为概念的最终证明,我们使用量子方法对 Iris 基准数据集的随机子集进行聚类。
缺乏纠错能力是阻碍科学家开发全尺寸量子计算机的障碍之一。纠正相关错误需要庞大而复杂的纠错方案,这些方案难以实施且成本高昂。在我的实验中,我研究了真实 IBM 量子计算机上量子计算中相关错误的普遍性,以提高对纠错的理解。我假设量子位在相邻时会出现相关错误,但在非相邻时不会出现相关错误。
摘要 - 卫星仪器的白天和黑夜监视地球的地面,结果,地球观测(EO)数据的大小大大增加。机器学习/深度学习(ML/DL)技术通常用于分析并处理这些大EO数据,而一种众所周知的ML技术是支持向量机(SVM)。SVM提出了二次编程问题,包括量子退火器(QA)以及基于门的量子计算机(包括量子计算机)有望比惯性计算机更有效地解决SVM;通过使用量子计算机/常规计算机来培训SVM,代表量子SVM(QSVM)/经典SVM(CSVM)应用程序。但是,量子计算机无法通过使用QSVM来解决许多实用的EO问题,因为它们的输入量很少。因此,我们组装了给定的EO数据的核心(“数据集的核心”),用于在小量子计算机上训练加权SVM。核心是原始数据集的一个小的,代表性的加权子集,与原始数据集相比,可以通过在小量子计算机上使用建议的加权SVM来分析其性能。作为实际数据,我们使用合成数据,虹膜数据,印度松树的高光谱图像(HSI)以及旧金山的偏光仪合成孔径雷达(Polsar)图像。我们通过使用Kullback-Leibler(KL)Divergence测试来测量原始数据集及其核心之间的接近性,此外,我们通过使用D-Wave量子量子退火器(D-Wave QA)和一台常规计算机在我们的核心数据上训练了加权SVM。我们的发现表明,核心具有很小的kl差异近似于原始数据集,而加权QSVM甚至在我们的一些实验实例上都超过了核心上的加权CSVM。作为一个侧面结果(或副产品结果),我们还提出了我们的KL差异发现,以证明我们的原始数据(即我们的合成数据,虹膜数据,高光谱图像和Polsar图像)和组装的壳体之间的亲密关系。
量子算法为传统方法解决起来成本高昂的计算问题提供了有效的解决方案。现在,可以使用公共量子计算机(例如 IBM 提供的量子计算机)来运行执行量子算法的小型量子电路。但是,这些量子计算机极易受到噪声的影响。在这里,我们介绍了量子电路噪声和连通性的重要概念,必须解决这些概念才能在量子计算机上获得可靠的结果。我们利用几个例子来展示噪声如何随电路深度而变化。我们介绍了 Simon 算法(一种用于解决同名计算问题的量子算法),解释了如何在 IBM 的 Qiskit 平台上实现它,并比较了在无噪声模拟器和受噪声影响的物理硬件上运行它的结果。我们讨论了 Qiskit 的转译器的影响,该转译器将理想的量子电路适配到量子比特之间连通性有限的物理硬件上。我们表明,即使是只有几个量子比特的电路,其成功率也会因量子噪声而显著降低,除非采取特定措施将其影响降至最低。 # 2021 由美国物理教师协会独家授权出版。https://doi.org/10.1119/10.0006204
在经典计算机上精确模拟量子系统(包括量子化学中的量子系统)在计算上非常困难。问题在于描述所研究系统所需的希尔伯特空间的维数实际上会随着系统的大小而呈指数增长,如图 1 所示。无论我们模拟动态还是计算某些静态属性(例如能量),这个限制始终存在。理查德·费曼提出了一种替代经典模拟的方法 [1]。他的想法是将上述量子系统的缺点转化为其优点。他建议将所研究量子系统的希尔伯特空间映射到另一个量子系统上(它们都呈指数级大),从而有效地在一个量子系统上模拟另一个量子系统(即在量子计算机上)。虽然开发小型量子计算机已经花了 30 多年的时间,但我们可能很快就会从费曼的建议中受益。 1 事实上,量子化学被认为是小型噪声量子计算机(称为噪声中型量子 (NISQ) 设备)的首批实际应用之一 [4]。此外,人们相信量子计算机最终将使我们能够解决化学、物理学和材料科学中的经典难题 [5–7]。特别是,强关联系统,如催化剂或高温超导体,属于具有高度社会经济重要性的问题,这些问题可以借助量子硬件得到解决。到目前为止,已经提出了几种量子算法来有效地解决化学中的计算难题(即在多项式时间内使用多项式资源,相对于所研究系统的规模和精度)。其中一些也已通过实验得到证实 [6]。然而,由于量子硬件能力有限,这些实验“仅仅”代表了小型化学系统的原理验证模拟,我们可以轻松地用经典方式模拟这些系统。为了使它们具有可扩展性,需要进行量子误差校正,这需要比目前更低的误差率,而且还需要数量级更多的(物理)量子比特。另一方面,这个领域发展非常迅速,我们可能在不久的将来看到分子的误差校正数字量子模拟。如上所述,已经提出了几种可以解决化学中不同类型问题的量子算法[6]。事实上,量子计算化学[5]在过去的15年里取得了巨大的进步。2 在本章中,我们提到了一些算法,但大多数时候都局限于分子汉密尔顿量的电子结构问题,即寻找分子低能谱的问题。这些算法可以作为几何优化、光学特性计算或反应速率测定的子程序[5]。此外,这里阐述的方法可以很容易地应用于其他问题(例如振动分析)。我们专注于数字量子模拟(模拟量子模拟是另一章的主题),这意味着
计算汉密尔顿量的能谱是量子力学中的一个重要问题。量子计算机的最新发展使人们认识到它们是解决这一问题的有力工具。量子相位估计 (QPE) 算法是确定汉密尔顿量特征值的算法之一 [1, 2, 3, 4, 5, 6]。该算法最初由 Kitaev、Lloyd 和 Abrams [1, 2, 3] 提出。该算法基于寻找特征值 λ = e iφ 或幺正算子的相位 φ。当幺正算子是量子系统演化的算子时,相位 φ 与汉密尔顿量的特征值相关。关于这个问题的简短综述可以在 [7] 中找到。在 [8] 中,提出了一种基于稳健相位估计算法估计跃迁能量的方法。此外,还已知可以检查能级的混合经典量子算法。其中包括量子近似优化算法(它识别出基态能量并用于解决优化问题 [9, 10, 11, 12]),变分量子特征值求解器(它识别出获得跃迁能量 [13, 14, 15, 16])。在 [17] 中,作者提出了一种有效的方法,用于根据演化算子期望值的时间依赖性来估计汉密尔顿函数的特征值。最初这个想法是在 [18] 中提出的。在 [19] 中,变分量子特征值求解器采用了量子比特有效的电路架构,并介绍了在量子计算机上研究量子多体系统基态特性的量子比特有效方案。在 [20] 中,描述了量子算法(量子 Lanczos,最小纠缠典型热态的量子类似物,最小纠缠典型热态的量子类似物),这些算法使得在量子计算机上检测基态、激发态和热态成为可能。在本文中,我们表明,研究物理量平均值的时间依赖性可以提取量子系统的跃迁能量。在物理量的算符与
摘要 — 神经形态计算机提供了低功耗、高效计算的机会。虽然它们主要应用于神经网络任务,但也有机会利用神经形态计算机的固有特性(低功耗、大规模并行、共置处理和内存)来执行非神经网络任务。在这里,我们演示了一种在神经形态计算机上执行稀疏二进制矩阵向量乘法的方法。我们描述了这种方法,它依赖于二进制矩阵向量乘法和广度优先搜索之间的联系,并介绍了以神经形态方式执行此计算的算法。我们在模拟中验证了该方法。最后,我们讨论了该算法的运行时间,并讨论了未来神经形态计算机在执行此计算时可能具有计算优势的地方。索引术语 — 神经形态计算、图算法、矩阵向量乘法、脉冲神经网络