摘要:我们提出了一种基于广义量子主方程 (GQME) 方法的量子算法,用于在嘈杂的中型量子 (NISQ) 计算机上模拟开放量子系统动力学。该方法通过为任何简化密度矩阵元素子集提供运动方程的严格推导,克服了林德布拉德方程的局限性,该方程假设弱系统 - 浴耦合和马尔可夫性。剩余自由度的影响产生的记忆核用作输入来计算相应的非幺正传播子。我们展示了如何使用 Sz.-Nagy 膨胀定理将非幺正传播子转换为高维希尔伯特空间中的幺正传播子,然后可以在 NISQ 计算机的量子电路上实现。我们通过分析当子集限制为简化密度矩阵的对角元素时量子电路深度对结果准确性的影响来验证我们的量子算法应用于自旋玻色子基准模型。我们的研究结果表明,我们的方法在 NISQ IBM 计算机上产生了可靠的结果。
量子算法 2,14 – 16 可用于求解薛定谔方程,其资源成本随量子比特数呈多项式增长。不幸的是,目前可用的嘈杂中尺度量子 (NISQ) 硬件 17 存在相对较差的门保真度和较低的量子比特数,18 这带来了两个关键挑战。首先,对于 NISQ 定制的量子算法 19 来说,最小化量子资源非常重要。最突出的 NISQ 方法是混合量子经典算法,如变分量子特征求解器 (VQE)、20,21 量子 Krylov 方法、18,22 – 26
International Journal of Exercise Science 13(7): 410-426, 2020. 数以百万计的人使用可穿戴技术设备来记录日常步数,以促进健康的生活方式。然而,许多此类设备的准确性尚未确定。目的是确定 Samsung Gear 2、FitBit Surge、Polar A360、Garmin Vivosmart HR+ 和 Leaf Health Tracker 在自由运动和跑步机条件下步行和慢跑时的信度和效度。40 名志愿者完成了 5 分钟间隔的步行和慢跑自由运动和跑步机方案。这些设备以随机配置同时佩戴。两个手动步数计数器的平均值被用作标准测量。重测信度通过组内相关系数 (ICC) 确定。有效性通过结合 Pearson 相关系数、平均绝对百分比误差(MAPE:自由运动 ≤ 10.0%,跑步机 ≤ 5.00%)和 Bland-Altman 分析(设备偏差和一致性限度)来确定。显著性设置为 p < 0.05。Samsung Gear 2 被认为在慢跑条件下既可靠又有效,但在步行条件下则不然。Fitbit Surge 在除跑步机步行(被认为是可靠的,ICC = 0.76;但无效)之外的所有条件下都可靠且有效。Polar A360 在一种条件下(跑步机慢跑 ICC = 0.78)被发现是可靠的,但在任何条件下都无效。Garmin Vivosmart HR+ 和 Leaf Health Tracker 被发现既可靠又有效
我在此提交 Daniel Keith Hinson 撰写的论文,题为“评估 F/A-18C/D Hornet 上的 AGM-154A 联合防区外武器 (JSOW) 的飞行测试方法和分离特性”。我已经检查了这篇论文的最终电子版的形式和内容,并建议接受它作为部分满足理学硕士学位的要求,主修航空系统。
通过 QASM 语言,这是 IBM Q Experience 团队发明的一种用于创建量子电路的语言。另一方面,第二种方法是编写 Python 代码并使用名为 QISKit [32] 的 Python 软件开发工具包 (SDK) 运行它们,它适用于所有类型的算法。因此,我们在本文中展示的工作是使用 QISKit 进行的。可通过云端公开访问的量子设备分别由 IBM Q 5 Yorktown (ibmqx2) 、IBM Q Burlington 、IBM Q 5 London 、IBM Q Essex 、IBM Q Vigo 和 IBM Q Ourense(六个 5 量子比特设备)以及 IBM Q 16 Melbourne 和 IBM Q Armonk(16 量子比特和 1 量子比特设备)表示。用于模拟的经典后端称为 IBMQ QASM 模拟器。所有后端都与一组由单量子比特旋转和相移门组成的量子门一起工作。所有其他单量子比特门(如 X、S、R z 等)一般都是由这三个门的序列构成的,它们与 CNOT 一起构成量子门的通用集。除了量子比特的数量之外,所提到的量子设备在量子比特连接或拓扑方面也有所不同,IBM Q Experience 将其称为设备的耦合图 [33]。在本文中,我们修改并在 IBM 量子计算机上实现了参考文献 [34] 中研究的量子算法,使用相位估计技术找到有限方阱势一维薛定谔方程的基态和第一激发态的能量特征值。我们使用试验波函数作为初始状态,并在位置和动量空间中将其离散化。我们还在希尔伯特空间中构建了时间演化矩阵,其中定义了计算基向量(即量子比特态)。然后,我们将时间演化电路应用于最初准备的寄存器,并使用相位估计方法获得包含能量的相位。我们表明,所提出的算法可以以合理的误差实现预期结果。除了众所周知的量子相位估计方案外,我们还讨论了迭代相位估计方法的实现,以减少电路尺寸和量子比特数,从而有效利用 IBM 量子计算资源。最重要的是,为了充分利用 5 量子比特 IBM 后端,我们通过选择迭代相位估计技术将电路尺寸从文献 [34] 中使用的 8 个量子比特缩短到 5 个。本文组织如下。第 3 节描述了基于相位估计方法的量子算法的步骤。要执行数字量子模拟,我们需要设计时间演化算子来找到系统的能量特征值。此外,坐标应该离散化,初始波函数在网格点上近似。我们还解释了本文使用的两种相位估计算法。在第 4 部分中,我们解释了如何为时间演化算符中的动能和势能项构造量子门。第 5 节给出了结果和讨论,第 6 节讨论了最后的评论。
• 确保 NCIR 的弹出窗口拦截器未打开。您可能需要将报告放大才能查看。在某些计算机上,它会弹出一个小窗口,而在其他计算机上,它会更大。报告可通过 Adobe Reader 查看。
除了增加重量外,机载低频声纳和其他系统还有特定的空间要求,这些要求可能会影响 SH-GOB 其他任务的作战效能。例如,海军规范要求在搜索和救援或医疗后送任务期间,直升机上应有空间放置担架。但是,操作员在开始这些任务之前需要从直升机上拆除声纳系统以容纳担架。声纳设计为在 30 分钟内从直升机上拆除。我们认为,如果搜索和救援以及医疗后送任务被推迟,可能会受到严重影响,因为在直升机配备担架之前必须拆除声纳系统。
攀爬或在起重机上工作时,请始终保持三点接触。三点接触意味着两只脚和一只手,或两只手和一只脚始终接触起重机。攀爬、在起重机上工作、安装和拆卸起重机时,要面向起重机。切勿从起重机上跳下。必要时使用可用的梯子。不遵守这些警告可能会导致人员受伤或死亡。如果受伤,请就医。启动和移动起重机之前,请检查起重机上和周围是否有其他人员。不要在驻车制动杆处于前进(释放)位置时启动发动机。一旦空气制动系统达到工作压力并且弹簧制动器释放,起重机就会滚动。在启动发动机之前,务必接合驻车制动杆。不遵守这些警告可能会导致人员受伤或死亡。如果受伤,请就医。