项目目标 • 演示 Starling 计划机动的机载会合评估 (CA) • 演示被动和主动/机动物体的持续 CA 检查 • 演示促进在轨自主 CA/COLA 的地面空间态势感知 (SSA) / 空间交通管理 (STM) 中心 • 演示 Starling 航天器在机载 CA 检测下的防撞 (COLA) 机动
摘要 人类面临生存危机;太空垃圾有可能变成“塑料漂流岛”。大型星座 (LC) 系统计划在低地球轨道 (LEO) 上运行数万甚至数十万颗卫星,这对太空时代构成了不光彩的终结的威胁。无法机动的卫星无法避免碰撞。即使是可以机动的卫星也可能发生碰撞。LEO 卫星之间的碰撞往往会造成灾难性的后果,导致大量新的碎片物体散布在 LEO 高度。我们开发了一个模型来探索凯斯勒综合症时间对卫星数量、卫星大小和 LC 轨道的依赖关系。模拟表明:1) 小型卫星(<25 千克)的 LC 比中型(25 至 300 千克)或大型(>300 千克)卫星群安全得多;2) 如果部署中型或大型卫星的 LC,它们在较低轨道(例如 450 公里)比在 600 公里或 1,200 公里轨道)更安全。演示了轨道容量(可持续部署的卫星数量和类型)和临界点(在此临界点不再可能通过停止发射来避免凯斯勒综合症)概念。
GEOINT 图像分析师利用、解释、分析和传播来自国家、战区、无人值守地面传感器和战术系统的图像,为作战提供 IMINT 支持,并且图像分析师可以分析图像以识别和传递环境危害、民事考虑和威胁活动到在战场上机动的部队;通过基线或中间图形、战斗损伤评估和附带损伤估计为致命和非致命目标提供支持。
- 地面软件和人员没有为持续的故障排除做好准备 - DSN 联系时间和团队开发和 V&V 序列的时间有限 - 自动进行脱饱和机动的 BCT 软件的动量约束和限制 - 使用 ACS 遥测和多普勒排列多普勒/动量/热响应以查看动量变化并计算产生的推力 • 飞行测试活动非常全面,包括加热、占空比、压力、阀门驱动等。
摘要:基于车辆动态模型 (VDM) 的导航性能在很大程度上取决于先验未知的气动系数的准确确定。在模型模拟或风洞实验分析等不同技术中,通过有利于全球导航卫星系统 (GNSS) 定位的状态空间增强进行自校准的方法是一种有趣且经济的替代方案。我们在模拟下研究这种技术,目的是确定飞机机动对气动系数之间以及与其他误差状态的精度和(去)相关性的影响。不同机动的组合表明对于获得令人满意的气动系数估计并减少其不确定性至关重要。
该部门从事载人和无人军用飞机及用于打击、监视和机动的武器系统的研究、开发、生产和改造,包括战斗机和教练机;垂直升力飞机,包括旋翼机和倾转旋翼机;以及商用衍生飞机,包括反潜机和加油机。此外,该部门还从事以下产品和相关服务的研究、开发、生产和改造:战略防御和情报系统,包括战略导弹和防御系统;指挥、控制、通信、计算机、情报、监视和侦察 (C4ISR);网络和信息解决方案;情报系统、卫星系统;包括政府和商业卫星;以及太空探索。
摘要:基于车辆动态模型 (VDM) 的导航性能在很大程度上取决于先验未知的气动系数的准确确定。在不同的技术中,例如模型模拟或风洞中的实验分析,通过有利于全球导航卫星系统 (GNSS) 定位的状态空间增强进行自校准的方法是一种有趣且经济的替代方案。我们在模拟下研究这种技术,目的是确定飞机机动对气动系数之间以及与其他误差状态的精度和(去)相关性的影响。不同机动的组合表明对于获得令人满意的气动系数估计并减少其不确定性至关重要。
放眼更远的未来,您可以开始看到飞行汽车——不,真的——这一概念被称为先进空中机动 (AAM)。电动汽车和自动驾驶汽车的进步重新激发了人们对电池动力在航空领域的整合的兴趣,数十亿美元的投资用于开发高度机动的电动垂直起降飞机,以及支持它们所需的辅助系统。如今,集成人工智能的无人机就是垫脚石。全面的监管和运营框架以及地面基础设施规划是解锁 AAM 广泛商业应用的关键。由于有如此多种类的飞机和商业模式在争夺新兴市场的主导地位,因此需要时间
GEOINT 图像分析师利用、解释、分析和传播来自国家、战区、无人值守地面传感器和战术系统的图像,为作战提供 IMINT 支持。图像有多种类型和类别,包括但不限于光电图像、红外、全动态视频、雷达、光谱图像、极地测量图像和地理空间数据。图像分析师可以分析图像以识别环境危害、民事考虑和威胁活动,并将其传达给在战场上机动的部队。图像分析师通过基线或中间图形、战斗损伤评估和附带损伤估计为致命和非致命目标提供支持。
无人战斗机 (UCAV) 研究使这些技术的远程操作技术在现代取得了显著进步,尽管主要侧重于地面打击场景。在空对空作战中,关键决策的毫秒级时间限制阻碍了无人战斗机的远程操作。除此之外,考虑到人类平均视觉反应时间为 0.15 到 0.30 秒,而思考最佳计划并与友军协调的时间则更长,人工智能 (AI) 可以利用巨大的改进空间。虽然许多支持提高自主能力的人预示着设计能够执行极高 g 机动的飞机的能力以及降低飞行员风险的好处,但本白皮书将主要关注实时决策能力的提高。