这项研究深入研究了健康保险交叉销售,其中将其他保险产品促进了现有保单持有人,建议对拥有基本健康保险的人进行补充保险,例如牙科或人寿保险。这项研究的重点是应用机器学习来预测南非客户之间的交叉销售机会。目的是开发一种预测模型,以帮助健康保险公司确定潜在的交叉销售客户。利用定量研究方法,使用各种机器学习算法(包括随机森林,k-nearest邻居,Xgboost分类器和python中的逻辑回归)分析了健康保险消费者信息的全面数据集。结果表明,逻辑回归是表现最佳的模型,当在1,000,000个健康保险客户的数据集中接受17个功能,包括健康保险客户信息,因此获得了0.83的准确得分,F1得分为0.91。发现的分析表明,以前的保险和更长的服务历史的客户更有可能购买其他健康保险产品。这些见解使健康保险公司通过改善客户的目标和保留策略来增强收入,从而为行业对有效的交叉销售方法的理解提供了宝贵的信息。该方法包括定量数据提取和机器学习应用,因此有助于交叉销售策略理解的进步。
免疫系统中主要的组织相容性复合物(MHC)I类和II类分子的关键作用已得到很好的确定。本研究旨在开发一种新型的机器学习框架,用于通过MHC I类和II类分子预测抗原肽表现。通过整合大规模质谱数据和其他相关数据类型,我们基于深度学习提供了预测模型ONMIMHC。我们使用独立的测试集对其性能进行了严格的评估,ONMIMHC在MHC-I任务中的PR-AUC得分为0.854,Top20%-PPV为0.934,这表现优于现有方法。同样,在MHC-II预测的域中,我们的模型ONMIMHC的PR-AUC得分为0.606,TOP20%-PPV为0.690,表现出优于其他基线方法。这些结果证明了我们模型ONMIMHC在准确预测MHC-I和MHC-II分子之间的肽MHC结合后的优势。凭借其出色的准确性和预测能力,我们的模型不仅在一般的预测任务中出色,而且在预测新抗原针对特定癌症类型的新抗原方面也取得了显着的结果。特别是对于子宫菌群子宫内膜癌(UCEC),我们的模型成功地预测了新抗原,对普通人类等位基因具有很高的结合概率。这一发现对于开发针对UCEC的个性化肿瘤疫苗非常重要。
摘要:由于食物的复杂状态和多样化的物理特性,有效地挖出食品对当前机器人系统构成了重大挑战。为了应对这一挑战,我们相信将食品编码为有意义的有效食品的重要性。然而,食品的独特特性,包括可变形,脆弱性,流动性或粒度,对现有表示构成了重大挑战。在本文中,我们以隐式方式提出了积极感知来学习有意义的食物代表的潜力。为此,我们提出了Scone,这是一个食品搜索机器人学习框架,利用从积极的掌握中获得的表示形式来促进食品可铲政策学习。Scone包括两个Crucial编码组件:交互式编码器和状态检索模式。通过编码过程,Scone能够捕获食品的特性和重要的状态特征。在我们的现实世界中的实验中,Scone在三种不同的难度水平上使用6种以前看不见的食品时,成功率具有71%的成功率,超过了最先进的方法。这种增强的性能强调了Scone的稳定性,因为所有食品始终达到超过50%的任务成功率。此外,Scone可容纳各种初始状态的令人印象深刻的能力使其能够精确评估食物的当前状况,从而导致了令人信服的成功率。有关更多信息,请访问我们的网站。
在当今迅速发展的技术景观中,人工智能(AI)和机器学习(ML)已成为各个领域工程师的必不可少的工具。本课程对专门针对工程应用的AI和ML技术进行了全面探索。参与者将深入研究基本原则,实际方法论和现实世界中的案例研究,使他们在工程项目中有效利用AI和ML所需的知识和技能。本课程采用理论讲座和实践演示的融合。由于本课程的跨学科性质,整个学科的参与者将能够参加,欣赏和增强他们的知识,以保持新兴的AI和ML技术。STC打算专注于以下域,但不限于:
抽象的心脏病和机器学习是两个不同的词,其中一个与医学领域有关,另一个与人工智能有关。在医疗中,大多数人都面临着心脏病的问题,机器学习正在发展计算机科学领域。心脏病被称为心脏病,它提供了更多的数据或信息,应收集它以提供患者的报告,并且机器学习还需要用于预测和解决问题的数据。机器学习技术用于预测心脏病的预测,在这种预测中,它以更少的计算时间和更高的准确性来促进其健康。心脏病预测需要大量的数据来预测,在云计算中,我们也有更多数据,并且在云中可用的数据很难分析。因此,我们使用机器学习算法或技术来预测心脏病,并且以相似的方式应用了这些算法或技术来预测或分析云中可用的数据。在本文中,我们将使用称为Backpropagation算法的机器学习算法,后来我们以后使用优化算法。反向传播算法涉及人工神经网络。反向传播是一种方法,用于计算一批数据后每个神经元的误差贡献(在图像识别,多个图像中)。这是由包围优化算法使用的,以调整每个神经元的重量,从而完成该情况的学习过程。机器学习算法和技术用于识别人类风险问题的强度,它可以帮助患者采取安全措施,以挽救患者的生命。关键字:机器学习,云计算,心脏,反向传播,优化
国会法案规定成立肯尼亚机器人和人工智能协会;规定其职能和权力;促进肯尼亚共和国境内机器人和人工智能技术负责任和合乎道德的发展和应用;并用于相关目的。
课程目标:本课程采用一种实用的方法来分析生物医学数据。这样做,三个目标努力。首先,学生将熟悉不同分析方法的必要理论背景,使他们能够了解为什么某些方法在某些情况下是合适的以及为什么其他方法不适合。第二,学生将获得分析生物医学数据所需的实用,动手技能,包括数据管理,算法开发和适当的代码库开发。这些技能将使学生在学术研究和行业内的独立研究项目中做好准备。第三,学生将学习如何解释,可视化和总结分析结果后完成。应用分析方法只是科学发现的挑战的一半。本课程的第三个目标是培训学生将科学分析的结果收集到一种格式,该格式可以与其他研究人员共享并理解科学发现。
商标法保护标记,以使公司能够向消费者发出产品的质量。为了获得保护,商标必须能够识别和区分货物。美国法院通常会在“独特性”(称为Abercrombie Spectrum)上找到标记,该标记将标记归类为幻想,任意或暗示性,因此将标记归类为“固有的独特性”,或者是描述性或通用性的,因此并非固有的。本文探讨了是否可以使用当前的自然语言处理技术在Abercrombie频谱上找到商标。在2012年至2019年之间使用约150万个美国商标注册以及220万相关的USPTO办公室操作,该论文提出了一种机器学习模型,该模型了解商标应用程序的语义特征,并预测商标是否本质上是独特的。我们的模型总体上可以预测具有86%精度的商标行动,并且可以确定商标应用程序的子集,在该子集对其独特性的预测中高度确定。我们进一步分析商标应用程序中的哪些功能推动了模型的预测。然后,我们探索方法的实际和规范性含义。在实际层面上,我们概述了一个决策支持系统,该系统可以作为“机器人商标书记员”,协助商标专家确定商标的独特性。这样的系统还可以帮助商标专家了解商标申请的哪些功能对商标的独特性有最大的作用。在理论上,我们讨论了Abercrombie频谱的规范限制,并建议超越Abercrombie,以换取其独特性不确定的商标。我们讨论了法律中的机器学习项目,不仅如何告知我们将来可能自动化的法律制度的各个方面,而且迫使我们解决可能是看不见的规范权衡。
地球科学中标记的培训数据的可用性反映在监督分析中使用的训练数据数量中。除了上述10年的分析外,我们还从2018 - 2019年的AGU论文中手动提取了其他相关信息,包括应用的ML算法,标记的培训数据的数量和数据类型(模型输出,卫星,原位,原位,重新分析等)。在我们调查的论文中,大多数ML算法是使用数百个标记样品培训的。但是,对于使用模型输出或大型,已建立的数据集的某些应用程序,培训数据的数量范围更大。缺乏训练数据在生物学科学和陆地水圈(水文)研究中尤其急切。
另请参阅:可穿戴传感器在 SARS-CoV-2 感染检测中的表现:系统评价,Mitratza 和 Goodale 等人。《柳叶刀数字健康》
