为了提高小型绿色蔬菜的智能机械化收获能力,根据其种植模式和农艺要求设计了一种自我推广的绿色蔬菜智能联合收割机。它可以同时满足用于切割,夹紧和输送以及收集小绿色蔬菜的机械化收获操作的要求。此外,该模型还采用了基于BMS技术的纯电动驱动器智能电池管理系统的电动驱动机箱,该系统实现了智能平衡功率。收割机采用了由PLC控制的智能控制系统,以自动检测机器的步行速度,切割机的高度和传输速度等,以实现每个工作零件的快速匹配。发现收割机在两个小时内的电力消耗比例为23%,平均收获效率为0.16Hm²/h。此外,收割机正常运行期间的平均损失率为4.22%。这项研究为智能机械化的小绿色蔬菜提供了参考。
我们提供了第一个机械化的后量子健全安全协议证明。我们通过开发 PQ-BC(一种对于量子攻击者来说是健全的计算一阶逻辑)和以 PQ-Squirrel 证明器形式提供的相应机械化支持来实现这一目标。我们的工作建立在经典 BC 逻辑 [7] 及其在 Squirrel [5] 证明器中的机械化基础上。我们对 PQ-BC 的开发需要使 BC 逻辑对于单个交互式量子攻击者来说是健全的。我们通过修改 Squirrel、依赖 PQ-BC 的健全性结果并强制执行一组句法条件来实现 PQ-Squirrel 证明器;此外,我们为该逻辑提供了新的策略以扩展该工具的范围。使用 PQ-Squirrel,我们进行了几个案例研究,从而给出了它们的计算后量子安全性的第一个机械证明。其中包括两种基于 KEM 的密钥交换通用构造、两种来自 IKEv1 和 IKEv2 的子协议,以及 Signal 的 X3DH 协议的拟议后量子变体。此外,我们使用 PQ-Squirrel 证明几个经典的 Squirrel 案例研究已经是后量子可靠的。
对在各种民用和采矿项目中应用机械发掘技术的应用的需求不断提高,从而提高了地面磨料特性及其机械化的挖掘性的重要性。切割工具的准确预后在计划机械化隧道项目中至关重要。此外,在特定的岩土条件下挖掘给定部分的确定长度的确切刀具编号的精确估计是项目顾问的主要任务之一。这些估计的主要目的是评估可行性研究阶段中切割器替换的所需时间和成本,并计划适当的维护时间表。LCPC测试程序是最简单,最常见的土壤磨蚀性评估方法之一。提出的研究的目的是研究LCPC磨损测试期间的钢与土壤相互作用。测量了在不同磨料样品上的LCPC测试的消耗能量。基于记录的能量值,引入了LCPC测试(WSEL)磨损特异性能量的新参数。获得的WSEL值显示出与样品晶粒大小和样品平均硬度的有意义的相关性。此外,结果表明,高LCPC磨损系数(LAC)值与测试过程中记录的高消耗能级有关。
本文研究了农业机械化在发展中经济体中的作用,以加强机械化政策和战略的制定。通过对机械化过程的审查和评估,明确了机械化过程的七个不同阶段,并确定了机械化的基本原理。给出了制定农业技术战略的一般准则。强调了机械化政策和战略作为农业发展计划的补充投入的必要性。本文以泰国的农业机械化为例进行了回顾,并讨论了其显著特点。为了分析技术和经济变量对机械化过程的影响,并支持机械化政策和战略的制定,开发了一个机械化模型 (MECHMOD),并将其作为测试案例应用于泰国中部地区。MECHMOD 的基本结构由一个线性规划表组成,该表模拟多种作物,其中根据作物、农场运营、工作方法和时间段指定对劳动力、役畜和机械的需求。本文以两方面的方式讨论了使用 MECHMOD 进行的实验结果。首先,讨论了 MECHMOD 的适用性。其次,从泰国的机械化政策和战略角度解释实验结果。
周文清先生 1919 年出生于中国太原,靠近蒙古边境。1940 年,他获得上海交通大学电气工程学士学位,1942 年获得麻省理工学院理学硕士学位。他的硕士论文题为“塞尔森机研究”,研究的是通常所说的闭环控制系统或伺服机构。作为后者的自然延伸,通用电气在二战期间聘请他根据有关日本零式战斗机的情报重新设计防空火控系统。20 世纪 50 年代,周先生在美国博世武器公司的武器部门工作,负责 Atlas (WS-107A) 洲际弹道导弹 (ICBM) 的数字计算机和全惯性制导系统的设计、开发和批量生产。 1951 年,他构想出一种惯性制导系统,用于自动导航太空飞行器,随后他设计出第一台全固态、高可靠性的太空数字计算机,并建立了洲际弹道导弹、太空助推器和载人航天器(从 Atlas、Titan、Saturn 和 Skylab 到 Minuteman 和航天飞机)制导系统的开发和机械化的基本系统方法。1956 年至 1958 年间,周先生发表或发表了几篇关于导弹制导系统的重要论文,其中一篇题为“机载晶体管数字计算机的设计理念
第一次工业革命始于 18 世纪末,当时农业社会在蒸汽机、水力和机械化的推动下实现了工业化和城市化。这一转变是从手工方法到机器,将人们从家中转移到专门建造的工厂。19 世纪末的第二次工业革命是技术进步的又一次巨大飞跃,主要由电力推动,这导致了制造和生产方法的进步,例如亨利·福特 [1] 引入的装配线实现了大规模生产,特别是汽车和飞机的生产,彻底改变了公共交通。第三次工业革命出现在 20 世纪下半叶,随着电子、计算机和信息技术的兴起,导致使用可编程逻辑控制器 (PLC) 和机器人技术实现生产自动化。第四次工业革命正在进行中,它建立在第三次工业革命和互联网发展、先进计算能力、数据科学、传感器低成本和新水平连接推动的技术进步的基础上,导致了被称为“数字化”的新技术现象 [2]。这种数字化通过将数字世界和物理世界连接在一起,使工厂自动化更加灵活,并为提高生产效率提供机会,从而推动制造业的变革 [3]。它使我们能够构建一个新的虚拟世界,从中可以引导物理世界。它也被解释为工业生产系统中网络物理系统的应用 [4]。978-1-7281-3021-7/19/$31.00 ©2019 IEEE
机器人系统工程的硕士学位课程有资格使毕业生使用计算机辅助设计软件来设计和生成用于机器人技术和自动化技术的复杂技术解决方案。因此,他们获得了对机器人技术的深入知识。获得了该硕士学位的毕业生具有以下资格:•他们经历了机器人作为机电雄性系统的典型例子,该机器人系统仅通过机械,驱动器,传感器和信息处理的明智组合而形成最佳解决方案。•除了构思和发展外,毕业生的活动领域还包括工作流程的组织和制造过程的监视。•他们有资格科学地工作,并获得了对工程和方法的深入理论和分析知识。•毕业生具有沟通能力,并了解如何在不断增加机械化的各个方面感知机器人技术的高度复杂技术应用,并将它们置于面向解决方案的相应环境中。•此外,毕业生能够不断独立地更新他们的知识。他们可以创造性地利用这一点来获得新的见解并解决问题,并在工程科学与社会问题(增加工作环境的数字化)之间对任务的批判性认识。他们具有知识和技能,可以在早期阶段识别新的发展和技术,并评估和评估其对各自活动领域的重要性。
外籍第一骑兵团是外籍军团唯一的装甲团。它隶属于第6轻装甲旅,其作战任务是紧急和两栖作战。该部队驻扎在马赛附近的卡尔皮亚涅营地(位于欧巴涅和卡西斯之间的卡朗克斯公园中心),由 900 名军团骑士组成,其使命是作战。第 1 骑兵团继承了为法国服务的外国骑兵团的传统,并因此获得了皇家外国骑兵团的称号,该团于 1921 年由主要由白俄罗斯人组成的部队创建,参与了阿尔及利亚战争结束之前的所有交战。战争:黎凡特、摩洛哥、突尼斯、第二次世界大战、印度支那、阿尔及利亚。它以其基于机械化的战术创新而著称。自 1967 年起,他常驻奥兰治,曾多次在非洲、海湾地区、巴尔干地区参与活动,最近还参加了 2020 年在萨赫勒-撒哈拉地带和马里的“新月形巴尔干行动”。该团于 2014 年迁往卡尔皮亚涅,发现那里拥有出色的训练和作战准备环境,增强了其作战使命。因此,它将成为首批装备美洲虎的军团之一,作为 SCORPION 计划的一部分,它将取代 AMX10RC。完全融入骑兵军团士兵的生活,在团桥内,您将在命令下服役
全球人口的增加和城市化对社会构成了重大挑战:空间越来越稀缺,需求超过了基础设施恶化的能力,运输充满拥堵,环境影响正在加速。地下空间,尤其是隧道,在应对这些挑战方面起着关键作用。但是,隧道过程的成本,风险,不确定性和复杂性阻碍了其增长。在本文中,我们设想了一些技术进步,这些技术进步可能会创新和改变机械化的隧道行业,包括人工智能(AI),自主和生物启发的系统。AI的扩散可以帮助人类工程师和运营商根据隧道期间的大量实时数据进行系统和定量做出明智的决策。自主隧道系统可以通过最少的人力干预来实现精确且可预测的隧道操作,并促进建造大规模和大规模的地下基础设施项目,这些基础设施项目以前使用常规方法具有挑战性或不可行。生物启发的系统可能会为更有效的隧道设计和建筑概念提供有价值的参考和策略。尽管这些技术进步可以带来巨大的希望,但它们也面临着巨大的挑战,例如提高隧道数据的可及性和共享性,开发出可靠,可靠和可解释的机器学习系统,以及扩展机制并确保从原型级别到现实世界应用程序的生物启发系统的适用性。解决这些挑战必须确保成功实施这些创新以进行未来的隧道。
第一次工业革命始于 18 世纪末,当时农业社会在蒸汽机、水力和机械化的推动下实现了工业化和城市化。这一转变是从手工方法到机器,将人们从家中转移到专门建造的工厂。19 世纪末的第二次工业革命是技术进步的又一次巨大飞跃,主要由电力推动,这导致了制造和生产方法的进步,例如亨利·福特 [1] 引入的装配线实现了大规模生产,特别是汽车和飞机的生产,彻底改变了公共交通。第三次工业革命出现在 20 世纪下半叶,随着电子、计算机和信息技术的兴起,导致使用可编程逻辑控制器 (PLC) 和机器人技术实现生产自动化。第四次工业革命正在进行中,它建立在第三次工业革命和互联网发展、先进计算能力、数据科学、传感器低成本和新水平连接推动的技术进步的基础上,导致了被称为“数字化”的新技术现象 [2]。这种数字化通过将数字世界和物理世界连接在一起,使工厂自动化更加灵活,并为提高生产效率提供机会,从而推动制造业的变革 [3]。它使我们能够构建一个新的虚拟世界,从中可以引导物理世界。它也被解释为工业生产系统中网络物理系统的应用 [4]。978-1-7281-3021-7/19/$31.00 ©2019 IEEE