量子到古典过渡的现象学,这是将原本量子系统驱动到对其物理配置的完全经典描述的过程,是广泛研究的对象。确实,这种过渡是否是由于新的基本物理学引起的是一个有争议的问题[1]。特别是,如果可以将复杂性和大小生长的量子系统的破坏性归因于固有机制,或者仅仅是周围环境的不可避免的存在[2,3],则仍处于争议。是由于环境的变质不能为测量问题提供令人满意的解决方案,从而引起了量子到经典的过渡问题的令人满意的解决方案,崩溃模型体现了一个替代的理论框架[4,5]。通过将波函数的崩溃提升到嵌入随机动力学中的通用物理机制中,崩溃模型以一种现象的方式解释了量子到经典的过渡,从而体现了量子力学的大型修饰的实例。通过随机schödinger方程和引入新的基本参数来实现这种修改。当用于评估微型系统动力学时,崩溃模型的框架会恢复标准的量子力学。向大型系统移动,相干性迅速抑制,以防止宏观区分状态的大空间叠加。连续的自发定位(CSL)是最深入的综合模型之一[6,7]。它通过进入量子系统的主方程的额外耗散术语来描述位置上的连贯性丧失。这意味着受到倒塌机制的开放量子系统应经历不可归因于其他环境噪声源的额外耗散。测试此模型是探索有效性量子机械限制的当前感兴趣的[8]。但是,当前在
抽象变构可以动态控制蛋白质功能。一个范式的例子是DNA甲基化维持的紧密策划过程。尽管变构站点具有根本的重要性,但它们的识别仍然是高度挑战。在这里,我们对基于基于活动的抑制剂Decitabine的基本维护甲基化机制进行了CRISPR扫描,以发现调节DNMT1的变构机制。与非共价DNMT1抑制相反,基于活性的选择暗示了DNMT1功能中催化结构域以外的许多区域。通过计算分析,我们从活跃位点的DNMT1远端中识别出涵盖多层自身抑制性界面和未表征的BAH2结构域的突变的远端突变点。我们将这些突变表征为功能获得,表现出增加的DNMT1活性。将我们的分析推送到UHRF1中,我们辨别了多个域中的功能收益突变,包括跨自抑制性TTD – PBR界面的关键残基。共同研究了基于活动的CRISPR扫描以提名候选变构站点的实用性,更广泛地介绍了新的分析工具,从而进一步完善了CRISPR扫描框架。
(a)节省能源或水的行动,表现出势能或节水,并促进能源效率,这将无法引起室内或室外浓度的显着变化。这些行动可能涉及对个人(例如建筑商,所有者,顾问,制造商和设计师),组织(例如公用事业)和政府(例如州,地方和部落)的财务和技术援助。涵盖的动作包括但不限于气候化(例如绝缘和更换门窗);降低恒温器设置;将计时器放置在热水热水器上;安装或更换节能照明,低流水管固定装置(例如水龙头,厕所和淋浴喷头),供暖,通风,空调系统以及电器;滴灌系统的安装;发电机效率和设备效率评级的提高;车辆和运输的效率提高(例如机队的更换);电源存储(例如飞轮和电池,通常不到10兆瓦);运输管理系统(例如交通信号控制系统,汽车导航,速度摄像头和自动板号识别);开发节能制造,工业或建筑实践;以及小规模的能源效率和保护研究与发展以及小规模的试点项目。涵盖的行动包括建筑物的翻新或新结构,只要它们发生在先前受到干扰或发达的地区。涵盖的行动可能涉及商业,住宅,农业,学术,机构或工业部门。涵盖的行动不包括规则制定,标准安排或拟议的DOE立法,除了本附录B5.1(b)中列出的那些行动。(b)涵盖的行动包括为消费产品和工业设备建立节能标准的规则制定,但前提是行动不会:(1)有可能导致制造基础设施的重大变化(例如,建造具有相当相关的地面干扰的新制造工厂); (2)涉及有关可用资源(例如稀有或有限原材料)的替代用途的重大未解决的冲突; (3)有可能导致处置材料的处置显着增加,这对人类健康和环境带来了重大风险(例如RCRA危险废物);或(4)有可能导致州或地区的能源消耗大幅增加。
• Energy storage technologies are rapidly developing in response to increasingly large fluctuations in power demand and availability from intermittent resources including renewables • New cycles require custom turbomachinery designs • SCO 2 power cycles are being developed for both indirect and direct fired configurations • SCO 2 cycles being considered for energy storage • This presentation focuses on development of SCO2 turbomachinery to meet these challenging requirements
摘要:从生命周期角度来看,涡轮机械涉及设计、生产和运行等面向可持续性的开发活动。数字孪生是一种具有巨大潜力的技术,可以改善投资额高、寿命长的涡轮机械。本研究提出了一个总体框架,其中包含涡轮机械生命周期的不同数字孪生支持技术,包括设计阶段、实验阶段、制造和装配阶段、运行和维护阶段以及回收阶段。简要回顾了现有的数字孪生和涡轮机械。讨论了新的数字孪生技术,包括建模、仿真、传感器、工业物联网、大数据和人工智能技术。最后,讨论了涡轮机械数字孪生的主要挑战和机遇。
计算出的压力场还提供了有关空化安全裕度的信息。图 2 显示了与空化安全性直接相关的压力分布,在泵模式下,最大扬程工作点时吸入侧转轮前缘的压力分布,以及最小扬程工作点时压力侧的压力分布。这些是泵模式下空化的关键工作点,可以使用 CFD 进行精确评估。这是河南天池和辽宁清源水力开发过程中的重要工具。由于泵模式下要求扬程范围大,两个项目的最大扬程和最小扬程之比约为 1.18,因此改进了水力设计,以增加泵的运行范围,而不会在转轮叶片处产生空化。
工程标准和规范变更;开发和提出新的工程实践;开发和改进将研究成果转移给最终用户的机制。实验室由以下中心组成: